A construction of covers of arithmetic schemes

被引:18
|
作者
Wiesend, Goetz [1 ]
机构
[1] Inst Expt Math, D-45326 Essen, Germany
关键词
D O I
10.1016/j.jnt.2006.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a regular arithmetic scheme, i.e. a regular integral separated scheme flat and of finite type over Spec Z. Assume that for all closed irreducible subschemes C subset of X of dimension 1 with normalisation (C) over tilde there are given open normal subgroups N-C of pi(1) ((C) over tilde), which fulfil the following compatibility condition: For all (x) over tilde is an element of (C) over tilde (1) x (X) (C) over tilde (2) the pre-images of N-C1 and N-C2 in pi(1) ((x) over tilde) coincide. If the indices of the N-C are bounded, then these data uniquely determine an open normal subgroup of pi(1) (X), whose pre-image in pi(1) ((C) over tilde) is N-C for all C. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:118 / 131
页数:14
相关论文
共 50 条
  • [1] QUANDLES ASSOCIATED TO GALOIS COVERS OF ARITHMETIC SCHEMES
    Takahashi, Nobuyoshi
    KYUSHU JOURNAL OF MATHEMATICS, 2019, 73 (01) : 145 - 164
  • [2] Tamely ramified covers of varieties and arithmetic schemes
    Wiesend, Goetz
    FORUM MATHEMATICUM, 2008, 20 (03) : 515 - 522
  • [3] Construction of arithmetic secret sharing schemes by using torsion limits
    Tutdere, Seher
    Uzunkol, Osmanbey
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (02): : 638 - 647
  • [4] LOTTERY SCHEMES AND COVERS
    MORLEY, M
    VANREES, GHJ
    UTILITAS MATHEMATICA, 1990, 37 : 159 - 166
  • [5] GALOIS COVERS OF AN ARITHMETIC SURFACE
    HARBATER, D
    AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (05) : 849 - 885
  • [6] Ramifications on arithmetic schemes
    Sun, XT
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 488 : 37 - 54
  • [7] MAXIMUM SCHEMES IN ARITHMETIC
    FERNANDEZMARGARIT, A
    PEREZJIMENEZ, MJP
    MATHEMATICAL LOGIC QUARTERLY, 1994, 40 (03) : 425 - 430
  • [8] On the ε-constants of arithmetic schemes
    Chinburg, T
    Erez, B
    Pappas, G
    Taylor, MJ
    MATHEMATISCHE ANNALEN, 1998, 311 (02) : 377 - 395
  • [9] On carpets, construction and covers
    Brunekreef, B
    CLINICAL AND EXPERIMENTAL ALLERGY, 1999, 29 (04): : 433 - 435
  • [10] Dihedral covers and an elementary arithmetic on elliptic surfaces
    Tokunaga, HO
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2004, 44 (02): : 255 - 270