Bernstein-Doetsch type results for s-convex functions

被引:0
|
作者
Burai, Pal [1 ]
Hazy, Attila [2 ]
Juhasz, Tibor [3 ]
机构
[1] Univ Debrecen, Dept Appl Math & Probabil Theory, H-4010 Debrecen, Hungary
[2] Univ Miskolc, Dept Appl Math, H-3515 Miskolc, Hungary
[3] Eszterhazy Karoly Coll, Inst Math & Informat, H-3300 Eger, Hungary
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2009年 / 75卷 / 1-2期
基金
匈牙利科学研究基金会;
关键词
convexity; Jensen-convexity; s-Jensen-convexity; s-convexity; Bernstein-Doetsch theorem; regularity properties of generalized convex functions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As a possible generalization of the concept of s-convexity due to BRECKNER [2], we introduce the so-called (H, s)-convexity. Besides collecting some facts on this type of functions, the main goal of this paper is to prove some regularity properties of (H, s)-convex functions.
引用
收藏
页码:23 / 31
页数:9
相关论文
共 50 条
  • [1] BERNSTEIN-DOETSCH TYPE RESULTS FOR h-CONVEX FUNCTIONS
    Hazy, Attila
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (03): : 499 - 508
  • [2] BERNSTEIN-DOETSCH TYPE RESULTS FOR (k, h)-CONVEX FUNCTIONS
    Hazy, Attila
    MISKOLC MATHEMATICAL NOTES, 2012, 13 (02) : 325 - 336
  • [3] Bernstein-Doetsch type results for quasiconvex functions
    Gilányi, A
    Nikodem, K
    Páles, Z
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (02): : 169 - 175
  • [4] A GENERALIZATION OF BERNSTEIN-DOETSCH THEOREM
    Murenko, Anna
    DEMONSTRATIO MATHEMATICA, 2012, 45 (01) : 35 - 38
  • [5] Bernstein-Doetsch type theorems for set-valued maps of strongly and approximately convex and concave type
    Gonzalez, Carlos
    Nikodem, Kazimierz
    Pales, Zsolt
    Roa, Gari
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 84 (1-2): : 229 - 252
  • [6] THEOREMS OF BERNSTEIN-DOETSCH, PICCARD AND MEHDI AND SEMILINEAR TOPOLOGY
    KOMINEK, Z
    KUCZMA, M
    ARCHIV DER MATHEMATIK, 1989, 52 (06) : 595 - 602
  • [7] Bernstein-Doetsch Type Theorems with Tabor Type Error Terms for Set-Valued Maps
    Gilanyi, Attila
    Gonzalez, Carlos
    Nikodem, Kazimierz
    Pales, Zsolt
    SET-VALUED AND VARIATIONAL ANALYSIS, 2017, 25 (02) : 441 - 462
  • [8] On Fejer type inequalities for products convex and s-convex functions
    Budak, Huseyin
    Bakis, Yonca
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (02): : 165 - 182
  • [9] COORDINATE STRONGLY s-CONVEX FUNCTIONS AND RELATED RESULTS
    Ullah, Syed Zaheer
    Khan, Muhammad Adil
    Khan, Zareen A.
    Chu, Yu-Ming
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (03): : 829 - 843
  • [10] Hadamard-type inequalities for s-convex functions
    Kirmaci, U. S.
    Bakula, M. Klaricic
    Ozdemir, M. E.
    Pecaric, J.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 193 (01) : 26 - 35