A pebble accretion model for the formation of the terrestrial planets in the solar system

被引:104
|
作者
Johansen, Anders [1 ,2 ]
Ronnet, Thomas [2 ]
Bizzarro, Martin [1 ]
Schiller, Martin [1 ]
Lambrechts, Michiel [2 ]
Nordlund, Ake [3 ]
Lammer, Helmut [4 ]
机构
[1] Univ Copenhagen, Ctr Star & Planet Format, GLOBE Inst, Oster Voldgade 5-7, DK-1350 Copenhagen, Denmark
[2] Lund Univ, Dept Astron & Theoret Phys, Lund Observ, Box 43, S-22100 Lund, Sweden
[3] Univ Copenhagen, Niels Bohr Inst, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark
[4] Austrian Acad Sci, Space Res Inst, Schmiedlstr 6, A-8042 Graz, Austria
基金
瑞典研究理事会; 奥地利科学基金会; 欧洲研究理事会;
关键词
Interplanetary flight - Budget control - Orbits - Isotopes - Planets;
D O I
10.1126/sciadv.abc0444
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pebbles of millimeter sizes are abundant in protoplanetary discs around young stars. Chondrules inside primitive meteorites-formed by melting of dust aggregate pebbles or in impacts between planetesimals-have similar sizes. The role of pebble accretion for terrestrial planet formation is nevertheless unclear. Here, we present a model where inward-drifting pebbles feed the growth of terrestrial planets. The masses and orbits of Venus, Earth, Theia (which later collided with Earth to form the Moon), and Mars are all consistent with pebble accretion onto proto-planets that formed around Mars' orbit and migrated to their final positions while growing. The isotopic compositions of Earth and Mars are matched qualitatively by accretion of two generations of pebbles, carrying distinct isotopic signatures. Last, we show that the water and carbon budget of Earth can be delivered by pebbles from the early generation before the gas envelope became hot enough to vaporize volatiles.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Did the terrestrial planets of the solar system form by pebble accretion?
    Morbidelli, A.
    Kleine, T.
    Nimmo, F.
    [J]. Earth and Planetary Science Letters, 2025, 650
  • [2] MODEL FOR ACCRETION OF TERRESTRIAL PLANETS
    WEIDENSCHILLING, SJ
    [J]. ICARUS, 1974, 22 (04) : 426 - 435
  • [3] Building the terrestrial planets: Constrained accretion in the inner Solar System
    Raymond, Sean N.
    O'Brien, David P.
    Morbidelli, Alessandro
    Kaib, Nathan A.
    [J]. ICARUS, 2009, 203 (02) : 644 - 662
  • [4] Formation of Planetesimals and Accretion of the Terrestrial Planets
    Stuart J. Weidenschilling
    [J]. Space Science Reviews, 2000, 92 : 295 - 310
  • [5] Formation of planetesimals and accretion of the terrestrial planets
    Weidenschilling, SJ
    [J]. SPACE SCIENCE REVIEWS, 2000, 92 (1-2) : 295 - 310
  • [6] DYNAMIC ACCRETION MODEL FOR TERRESTRIAL PLANETS
    WETHERILL, GW
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1977, 58 (06): : 428 - 428
  • [7] Constraining the Formation of the Four Terrestrial Planets in the Solar System
    Lykawka, Patryk Sofia
    Ito, Takashi
    [J]. ASTROPHYSICAL JOURNAL, 2019, 883 (02):
  • [8] Can the giant planets of the Solar System form via pebble accretion in a smooth protoplanetary disc?
    Lau, Tommy Chi Ho
    Lee, Man Hoi
    Brasser, Ramon
    Matsumura, Soko
    [J]. ASTRONOMY & ASTROPHYSICS, 2024, 683
  • [9] Forming Planets via Pebble Accretion
    Johansen, Anders
    Lambrechts, Michiel
    [J]. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, VOL 45, 2017, 45 : 359 - 387
  • [10] Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water
    Rubie, D. C.
    Jacobson, S. A.
    Morbidelli, A.
    O'Brien, D. P.
    Young, E. D.
    de Vries, J.
    Nimmo, F.
    Palme, H.
    Frost, D. J.
    [J]. ICARUS, 2015, 248 : 89 - 108