Physics-Aware 3D Mesh Synthesis

被引:3
|
作者
Wang, Jianren [1 ]
He, Yihui [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
来源
2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019) | 2019年
关键词
NEURAL-NETWORKS;
D O I
10.1109/3DV.2019.00062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new task which emphasizes the importance of past-designs in 3D mesh synthesis. Instead of synthesizing novel meshes from scratch, we introduce a physics-aware 3D mesh synthesis algorithm, which consists of two modules: a 3D mesh synthesis module where we use a VAEGAN to encode 3D meshes into a latent variable and use the decoder to generate 3D meshes from the encoded representations; a scientific decision making module using reinforcement learning which alters the latent representation supervised by a provided physical constraint. The results show that our approach can modify a given mesh so that it satisfies external physical property constraints while maintaining high appearance similarity. More importantly, our method outperforms all baseline methods by a large margin.
引用
收藏
页码:502 / 512
页数:11
相关论文
共 50 条
  • [1] Physics-Aware Security Monitoring against Structural Integrity Attacks in 3D Printers
    Etigowni, Sriharsha
    Liang, Sizhuang
    Zonouz, Saman
    Beyah, Raheem
    51ST ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS (DSN 2021), 2021, : 507 - 518
  • [2] Rapid 3D nanoscale coherent imaging via physics-aware deep learning
    Chan, Henry
    Nashed, Youssef S. G.
    Kandel, Saugat
    Hruszkewycz, Stephan O.
    Sankaranarayanan, Subramanian K. R. S.
    Harder, Ross J.
    Cherukara, Mathew J.
    APPLIED PHYSICS REVIEWS, 2021, 8 (02)
  • [3] TOMOGRAPHIC IMAGING WITH ENHANCED SPATIAL STRUCTURES VIA A PHYSICS-AWARE 3D RECONSTRUCTION NETWORK
    Ma, Xiangdong
    Zhang, Xiaoling
    Ren, Yu
    Zhan, Xu
    Shi, Jun
    Wei, Shunjun
    Zeng, Tianjiao
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1922 - 1925
  • [4] AutoPhaseNN: unsupervised physics-aware deep learning of 3D nanoscale Bragg coherent diffraction imaging
    Yao, Yudong
    Chan, Henry
    Sankaranarayanan, Subramanian
    Balaprakash, Prasanna
    Harder, Ross J.
    Cherukara, Mathew J.
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [5] AutoPhaseNN: unsupervised physics-aware deep learning of 3D nanoscale Bragg coherent diffraction imaging
    Yudong Yao
    Henry Chan
    Subramanian Sankaranarayanan
    Prasanna Balaprakash
    Ross J. Harder
    Mathew J. Cherukara
    npj Computational Materials, 8
  • [6] Physics-aware macromodels for MEMS switches
    Lup, Aurel-Sorin
    Ciuprina, Gabriela
    Ioan, Daniel
    Duca, Anton
    Nicoloiu, Alexandra
    Vasilache, Dan
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2020, 39 (02) : 497 - 509
  • [7] Embodying Physics-Aware Avatars in Virtual Reality
    Tao, Yujie
    Wang, Cheng Yao
    Wilson, Andrew D.
    Ofek, Eyal
    Gonzalez-Franco, Mar
    PROCEEDINGS OF THE 2023 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2023, 2023,
  • [8] Physics-Aware Gaussian Processes for Earth Observation
    Camps-Valls, Gustau
    Svendsen, Daniel H.
    Martino, Luca
    Munoz-Mari, Jordi
    Laparra, Valero
    Campos-Taberner, Manuel
    Luengo, David
    IMAGE ANALYSIS, SCIA 2017, PT II, 2017, 10270 : 205 - 217
  • [9] Physics-aware Gaussian processes in remote sensing
    Camps-Valls, Gustau
    Martino, Luca
    Svendsen, Daniel H.
    Campos-Taberner, Manuel
    Munoz-Mari, Jordi
    Laparra, Valero
    Luengo, David
    Javier Garcia-Haro, Francisco
    APPLIED SOFT COMPUTING, 2018, 68 : 69 - 82
  • [10] Deep physics-aware stochastic seismic inversion
    Burkle, Paula Yamada
    Azevedo, Leonardo
    Vellasco, Marley
    GEOPHYSICS, 2023, 88 (01) : R11 - R24