Mixed hidden Markov models: An extension of the hidden Markov model to the longitudinal data setting

被引:164
|
作者
Altman, Rachel MacKay [1 ]
机构
[1] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
hidden Markov model; latent process; longitudinal model; mixed model; random effect;
D O I
10.1198/016214506000001086
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Hidden Markov models (HMMs) are a useful tool for capturing the behavior of overdispersed, autocorrelated data. These models have been applied to many different problems, including speech recognition, precipitation modeling, and gene finding and profiling. Typically, HMMs are applied to individual stochastic processes; HMMs for simultaneously modeling multiple processes-as in the longitudinal data setting-have not been widely studied. In this article I present a new class of models, mixed HMMs (MHMMs), where I use both covariates and random effects to capture differences among processes. I define the models using the framework of generalized linear mixed models and discuss their interpretation. I then provide algorithms for parameter estimation and illustrate the properties of the estimators via a simulation study. Finally, to demonstrate the practical uses of MHMMs, I provide an application to data on lesion counts in multiple sclerosis patients. I show that my model, while parsimonious, can describe the heterogeneity among such patients.
引用
收藏
页码:201 / 210
页数:10
相关论文
共 50 条
  • [1] Mixed Hidden Markov Models for Longitudinal Data: An Overview
    Maruotti, Antonello
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2011, 79 (03) : 427 - 454
  • [2] Multivariate Longitudinal Data Analysis with Mixed Effects Hidden Markov Models
    Raffa, Jesse D.
    Dubin, Joel A.
    [J]. BIOMETRICS, 2015, 71 (03) : 821 - 831
  • [3] Hidden Markov models for longitudinal comparisons
    Scott, SL
    James, GM
    Sugar, CA
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (470) : 359 - 369
  • [4] Continuous time hidden Markov model for longitudinal data
    Zhou, Jie
    Song, Xinyuan
    Sun, Liuquan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 179
  • [5] Mixed location scale hidden Markov model for the analysis of intensive longitudinal data
    Lin, Xiaolei
    Mermelstein, Robin
    Hedeker, Donald
    [J]. HEALTH SERVICES AND OUTCOMES RESEARCH METHODOLOGY, 2020, 20 (04) : 222 - 236
  • [6] Mixed location scale hidden Markov model for the analysis of intensive longitudinal data
    Xiaolei Lin
    Robin Mermelstein
    Donald Hedeker
    [J]. Health Services and Outcomes Research Methodology, 2020, 20 : 222 - 236
  • [7] Markov models - hidden Markov models
    Grewal, Jasleen K.
    Krzywinski, Martin
    Altman, Naomi
    [J]. NATURE METHODS, 2019, 16 (09) : 795 - 796
  • [8] Markov models — hidden Markov models
    Jasleen K. Grewal
    Martin Krzywinski
    Naomi Altman
    [J]. Nature Methods, 2019, 16 : 795 - 796
  • [9] Robust fitting of hidden Markov regression models under a longitudinal setting
    Maruotti, Antonello
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (08) : 1728 - 1747
  • [10] Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study
    Marino, Maria Francesca
    Alfo, Marco
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 94 : 193 - 209