Edge-fault-tolerant node-pancyclicity of twisted cubes

被引:13
|
作者
Yang, Ming-Chien [1 ]
机构
[1] Aletheia Univ, Dept Knowledge Management, Danshui 721, Tainan County, Taiwan
关键词
Cycle; Node-pancyclic; Embedding; Twisted cube; Fault tolerance; Interconnection networks; Parallel processing; BIPANCYCLICITY; HYPERCUBES; GRAPHS; CYCLE;
D O I
10.1016/j.ipl.2009.08.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The twisted cube is an important variant of the hypercube. Recently, Fan et al. proved that the n-dimensional twisted cube TQ(n) is edge-pancyclic for every n >= 3. They also asked if TQ(n) is edge-pancyclic with (n - 3) faults for n >= 3. We find that TQ(n) is not edge-pancyclic with only one faulty edge for any n >= 3. Then we prove that TQn is node-pancyclic with ([n/2] - 1) faulty edges for every n >= 3. The result is optimal in the sense that with [n/2] faulty edges, the faulty TQ(n) is not node-pancyclic for any n >= 3. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1206 / 1210
页数:5
相关论文
共 50 条
  • [1] Node-Pancyclicity of Faulty Twisted Cubes
    Yang, Ming-Chien
    2009 INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES (PDCAT 2009), 2009, : 63 - 66
  • [2] Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes
    Ma, Meijie
    Liu, Guizhen
    Xu, Jun-Ming
    PARALLEL COMPUTING, 2007, 33 (01) : 36 - 42
  • [3] Node-pancyclicity and edge-pancyclicity of crossed cubes
    Fan, JX
    Lin, XL
    Jia, XH
    INFORMATION PROCESSING LETTERS, 2005, 93 (03) : 133 - 138
  • [4] Edge-fault-tolerant vertex-pancyclicity of augmented cubes
    Fu, Jung-Sheng
    INFORMATION PROCESSING LETTERS, 2010, 110 (11) : 439 - 443
  • [5] Fault-tolerant edge-pancyclicity of locally twisted cubes
    Xu, Xirong
    Zhai, Wenhua
    Xu, Jun-Ming
    Deng, Aihua
    Yang, Yuansheng
    INFORMATION SCIENCES, 2011, 181 (11) : 2268 - 2277
  • [6] Edge-fault-tolerant pancyclicity of arrangement graphs
    Sun, Sainan
    Xu, Min
    Wang, Kaishun
    INFORMATION SCIENCES, 2014, 285 : 50 - 62
  • [7] Fault-Tolerant Edge-Pancyclicity of Locally Twisted Cubes LTQn
    Xu, Xirong
    Zhang, Huifeng
    Zhao Lingqi
    Zhe Zhang
    Yang, Yuansheng
    UTILITAS MATHEMATICA, 2020, 115 : 143 - 158
  • [8] Edge-Fault-Tolerant Pancyclicity of Alternating Group Graphs
    Tsai, Ping-Ying
    Chen, Gen-Huey
    Fu, Jung-Sheng
    NETWORKS, 2009, 53 (03) : 307 - 313
  • [9] Edge-fault-tolerant hamiltonicity of locally twisted cubes under conditional edge faults
    Hsieh, Sun-Yuan
    Wu, Chang-Yu
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2010, 19 (01) : 16 - 30
  • [10] Edge-fault-tolerant hamiltonicity of locally twisted cubes under conditional edge faults
    Sun-Yuan Hsieh
    Chang-Yu Wu
    Journal of Combinatorial Optimization, 2010, 19 : 16 - 30