The formulation and calibration of models is a vital method for probing and predicting the behavior of marine ecosystems. The ability to do this may suffer, however, if the calibrating data set is subject to significant spatial variability between samples that is not resolved in the model. We propose that some of this variability might be accounted for by variable time lags between sampled water masses which are otherwise assumed to follow a common pattern of ecosystem variability (dynamical trajectory). Using twin tests of fitting models to Simulated data sets, we show that realistic levels of meso/sub-mesoscale variability in time lags may have significant distortion effects on the parameter fits from standard methods which do not account for it. The distortion is such as to 'smooth out' or underestimate the magnitude of temporal variability within sampled water masses, causing loss of accuracy and robustness of biological parameter estimates and functions thereof (e.g. gross primary production). A new method of model fitting is shown to avoid these effects, allowing improved estimates over a broad range of spatial time lag variability and measurement noise levels, assuming accurate estimation of the time lag variance. for which we also Suggest a method.
机构:
Inst Natl Pesquisas Espaciais, Div Sensoriamento Remoto, BR-12227010 Sao Jose Dos Campos, SP, BrazilInst Natl Pesquisas Espaciais, Div Sensoriamento Remoto, BR-12227010 Sao Jose Dos Campos, SP, Brazil
Soares, Helena Cachanhuk
Marcolino Gherardi, Douglas Francisco
论文数: 0引用数: 0
h-index: 0
机构:
Inst Natl Pesquisas Espaciais, Div Sensoriamento Remoto, BR-12227010 Sao Jose Dos Campos, SP, BrazilInst Natl Pesquisas Espaciais, Div Sensoriamento Remoto, BR-12227010 Sao Jose Dos Campos, SP, Brazil
Marcolino Gherardi, Douglas Francisco
Pezzi, Luciano Ponzi
论文数: 0引用数: 0
h-index: 0
机构:
Inst Natl Pesquisas Espaciais, Div Sensoriamento Remoto, BR-12227010 Sao Jose Dos Campos, SP, BrazilInst Natl Pesquisas Espaciais, Div Sensoriamento Remoto, BR-12227010 Sao Jose Dos Campos, SP, Brazil
Pezzi, Luciano Ponzi
Kayano, Mary Toshie
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Previsao Tempo & Estudos Climat CPTEC INPE, BR-12630000 Cachoeira Paulista, SP, BrazilInst Natl Pesquisas Espaciais, Div Sensoriamento Remoto, BR-12227010 Sao Jose Dos Campos, SP, Brazil
Kayano, Mary Toshie
Paes, Eduardo Tavares
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rural Amazonia, Inst Socioambiental & Recursos Hidr ISARH, BR-66077901 Belem, Para, BrazilInst Natl Pesquisas Espaciais, Div Sensoriamento Remoto, BR-12227010 Sao Jose Dos Campos, SP, Brazil