An infinite family of pairs of imaginary quadratic fields with both class numbers divisible by five

被引:2
|
作者
Aoki, Miho [1 ]
Kishi, Yasuhiro [2 ]
机构
[1] Shimane Univ, Interdisciplinary Fac Sci & Engn, Dept Math, Matsue, Shimane 6908504, Japan
[2] Aichi Univ Educ, Fac Educ, Dept Math, Kariya, Aichi 4488542, Japan
关键词
Quadratic fields; Quartic fields; Class numbers;
D O I
10.1016/j.jnt.2016.12.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a new infinite family of pairs of imaginary quadratic fields with both class numbers divisible by five. Let n be a positive integer that satisfy n 3 (mod 500) and n not equivalent to 0 (mod 3). We prove that 5 divides the class numbers of both Q(root 2 - F-n) and Q(root 5(2 - F-n)) where Fn, is the nth Fibonacci number. (C) 2017 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:333 / 343
页数:11
相关论文
共 50 条