POSITIVE STEADY STATES AND DYNAMICS FOR A DIFFUSIVE PREDATOR-PREY SYSTEM WITH A DEGENERACY

被引:0
|
作者
Yang, Lu [1 ,2 ]
Zhang, Yimin [3 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Key Lab Appl Math & Complex Syst, Lanzhou 730000, Gansu, Peoples R China
[3] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
基金
中国国家自然科学基金;
关键词
Predator-prey system; steady state solution; dynamical behavior; CROSS-DIFFUSION; BIFURCATION BRANCH; GLOBAL BIFURCATION; DISPERSAL RATES; MODEL; EVOLUTION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider positive steady state solutions and dynamics for a spatially heterogeneous predator-prey system with modified Leslie-Gower and Holling-Type II schemes. The heterogeneity here is created by the degeneracy of the intra-specific pressures for the prey. By the bifurcation method, the degree theory, and a priori estimates, we discuss the existence and multiplicity of positive steady states. Moreover, by the comparison argument, we also discuss the dynamical behavior for the diffusive predator-prey system.
引用
收藏
页码:537 / 548
页数:12
相关论文
共 50 条