automorphism;
central automorphism;
finite p-group;
D O I:
10.1017/S0004972709000276
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let G be a group and let C-Aut Phi(G) (Z(Phi(G))) be the set of all automorphisms of G centralizing G/Phi(G) and Z(Phi(G)). For each prime p and finite p-group G, we prove that C-Aut Phi(G)(Z(Phi(G))) <= Inn(G) if and only if G is elementary abelian or Phi(G) = Z(G) and Z(G) is cyclic.