A Framework for Data-Driven Augmented Reality

被引:5
|
作者
Albuquerque, Georgia [1 ,3 ]
Sonntag, Doerte [2 ]
Bodensiek, Oliver [2 ]
Behlen, Manuel [1 ]
Wendorff, Nils [1 ]
Magnor, Marcus [1 ]
机构
[1] TU Braunschweig, Comp Graph Lab, Braunschweig, Germany
[2] TU Braunschweig, Inst Sci Educ Res, Braunschweig, Germany
[3] DLR, Software Space Syst & Interact Visualizat, Braunschweig, Germany
关键词
Augmented Reality; Physics education; Real-time interaction; EDUCATION;
D O I
10.1007/978-3-030-25999-0_7
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new framework to support the creation of augmented reality (AR) applications for educational purposes in physics or engineering lab courses. These applications aim to help students to develop a better understanding of the underlying physics of observed phenomena. For each desired experiment, an AR application is automatically generated from an approximate 3D model of the experimental setup and precomputed simulation data. The applications allow for a visual augmentation of the experiment, where the involved physical quantities like vector fields, particle beams or density fields can be visually overlaid on the real-world setup. Additionally, a parameter feedback module can be used to update the visualization of the physical quantities according to actual experimental parameters in real-time. The proposed framework was evaluated on three different experiments: a Teltron tube with Helmholtz coils, an electron-beam-deflection tube and a parallel plate capacitor.
引用
收藏
页码:71 / 83
页数:13
相关论文
共 50 条
  • [1] Hybrid learning environments by data-driven augmented reality
    Sonntag, Doerte
    Albuquerque, Georgia
    Magnor, Marcus
    Bodensiek, Oliver
    [J]. RESEARCH. EXPERIENCE. EDUCATION., 2019, 31 : 32 - 37
  • [2] Data-Driven Digital Twins in Surgery utilizing Augmented Reality and Machine Learning
    Riedel, Paul
    Riesner, Michael
    Wendt, Karsten
    Assmann, Uwe
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 580 - 585
  • [3] Data-Driven Kinematic Control for Robotic Spatial Augmented Reality System with Loose Kinematic Specifications
    Lee, Ahyun
    Lee, Joo-Haeng
    Kim, Jaehong
    [J]. ETRI JOURNAL, 2016, 38 (02) : 337 - 346
  • [4] A Data-driven Process Recommender Framework
    Yang, Sen
    Dong, Xin
    Sun, Leilei
    Zhou, Yichen
    Farneth, Richard A.
    Xiong, Hui
    Burd, Randall S.
    Marsic, Ivan
    [J]. KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 2111 - 2120
  • [5] A Novel Framework of Data-Driven Networking
    Yao, Haipeng
    Qiu, Chao
    Fang, Chao
    Chen, Xu
    Yu, F. Richard
    [J]. IEEE ACCESS, 2016, 4 : 9066 - 9072
  • [6] A Framework for Data-Driven Automata Design
    Zhang, Yuanrui
    Chen, Yixiang
    Ma, Yujing
    [J]. REQUIREMENTS ENGINEERING IN THE BIG DATA ERA, 2015, 558 : 33 - 47
  • [7] A framework for data-driven algorithm testing
    Funk, W
    Kirchner, D
    [J]. Security, Steganography, and Watermarking of Multimedia Contents VII, 2005, 5681 : 287 - 297
  • [8] A data-driven detection optimization framework
    Schwartz, William Robson
    Cunha de Melo, Victor Hugo
    Pedrini, Helio
    Davis, Larry S.
    [J]. NEUROCOMPUTING, 2013, 104 : 35 - 49
  • [9] Legitimising data-driven models: exemplification of a new data-driven mechanistic modelling framework
    Mount, N. J.
    Dawson, C. W.
    Abrahart, R. J.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2013, 17 (07) : 2827 - 2843
  • [10] DaLiF: a data lifecycle framework for data-driven governments
    Syed Iftikhar Hussain Shah
    Vassilios Peristeras
    Ioannis Magnisalis
    [J]. Journal of Big Data, 8