Resonances and antibound states for the Poschl-Teller potential: Ladder operators and SUSY partners

被引:26
|
作者
Cevik, D. [1 ]
Gadella, M. [2 ,3 ]
Kuru, S. [1 ]
Negro, J. [2 ,3 ]
机构
[1] Ankara Univ, Dept Phys, Fac Sci, TR-06100 Ankara, Turkey
[2] Univ Valladolid, Dept Fis Teor Atom & Opt, E-47011 Valladolid, Spain
[3] Univ Valladolid, IMUVA, E-47011 Valladolid, Spain
关键词
Poschl-Teller potential; Factorization method; Ladder operators; Antibound and resonance states; DYNAMICAL ALGEBRAS; RANGE POTENTIALS; S-MATRIX; SPECTRUM; SCATTERING; POLES;
D O I
10.1016/j.physleta.2016.03.003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the one dimensional scattering produced by all variations of the Poschl-Teller potential, i.e., potential well, low and high barriers. The transmission coefficients of Poschl-Teller well and low barrier potentials have an infinite number of simple poles corresponding to bound and antibound states. However, the Poschl-Teller high barrier potential shows an infinite number of resonance poles. We have constructed ladder operators connecting wave functions for bound and antibound states as well as for resonance states. Finally, using wave functions of these states, we provide some examples of supersymmetric partners of the Poschl-Teller Hamiltonian. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1600 / 1609
页数:10
相关论文
共 50 条
  • [1] Ladder operators for the modified Poschl-Teller potential
    Dong, SH
    Lemus, R
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2002, 86 (03) : 265 - 272
  • [2] First-order SUSY partners of the trigonometric Poschl-Teller potential
    Contreras-Astorga, Alonso
    Fernandez C, David J.
    [J]. ADVANCED SUMMER SCHOOL IN PHYSICS 2007: FRONTIERS IN CONTEMPORARY PHYSICS, 2007, 960 : 55 - 60
  • [3] Second-order SUSY partners of the trigonometric Poschl-Teller potentials
    Contreras-Astorga, Alonso
    Fernandez C, David J.
    [J]. 5TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES QTS5, 2008, 128
  • [4] Coherent states of the Poschl-Teller potential and their revival dynamics
    Roy, U
    Banerji, J
    Panigrahi, PK
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (41): : 9115 - 9125
  • [5] GENERALIZED POSCHL-TELLER POTENTIAL
    SIMSEK, M
    YALCIN, Z
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 1994, 16 (1-2) : 211 - 215
  • [6] Supersymmetric partners of the trigonometric Poschl-Teller potentials
    Contreras-Astorga, Alonso
    Fernandez C, David J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (47)
  • [7] Coherent Gamow states for the hyperbolic Poschl-Teller potential
    Civitarese, O.
    Gadella, M.
    [J]. ANNALS OF PHYSICS, 2019, 406 : 222 - 232
  • [8] Function spaces associated with Schrodinger operators: The Poschl-Teller potential
    Olafsson, Gestur
    Zheng, Shijun
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (06) : 653 - 674
  • [9] ON THE QUANTIZATION OF THE MODIFIED POSCHL-TELLER POTENTIAL
    WU, YR
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (11) : 2586 - 2587
  • [10] Generalized coherent states for the Poschl-Teller potential and a classical limit
    Crawford, MGA
    Vrscay, ER
    [J]. PHYSICAL REVIEW A, 1998, 57 (01): : 106 - 113