A Spatial-Temporal Approach to Differentiate Epidemic Risk Patterns

被引:0
|
作者
Wen, Tzai-hung [1 ]
Lin, Neal H. [2 ]
Lin, Katherine Chun-min [3 ]
Fan, I-chun [1 ]
Su, Ming-daw [4 ]
King, Chwan-chuen [2 ]
机构
[1] Acad Sinica, Ctr Geog Informat Sci, Res Ctr Humanities & Social Sci, Taipei 115, Taiwan
[2] Coll Publ Hlth, Inst Epidemiol, Taipei, Taiwan
[3] Natl Taiwan Univ, Coll Publ Hlth, Dept Publ Hlth, Taipei, Taiwan
[4] Natl Taiwan Univ, Dept Bioenvironm Syst Engn, Taipei, Taiwan
关键词
risk identification; spatial autocorrelation; spatial-temporal analysis; epidemic;
D O I
10.1007/978-3-540-71318-0_16
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The purpose of disease mapping is to find spatial clustering and identify risk areas and potential epidemic initiators. Rather than relying on plotting either the case number or incidence rate, this chapter proposes three temporal risk indices: the probability of case occurrence (how often did uneven cases occur), the duration of an epidemic (how long did cases persist), and the intensity of a transmission (were the case of chronological significance). By integrating the three indicators using the local indicator of spatial autocorrelation (LISA) statistic, this chapter intends to develop a novel approach for evaluating spatial-temporal relationships with different risk patterns in the 2002 dengue epidemic, the worst outbreak in the past sixty years. With this approach, not only are hypotheses generated through the mapping processes in furthering investigation, but also procedures provided to identify spatial health risk levels with temporal characteristics.
引用
收藏
页码:214 / 227
页数:14
相关论文
共 50 条
  • [1] AN APPROACH OF DISCOVERING SPATIAL-TEMPORAL PATTERNS IN GEOGRAPHICAL PROCESS
    Chai, Siyue
    Su, Fenzhen
    Ma, Weiling
    [J]. JOINT INTERNATIONAL CONFERENCE ON THEORY, DATA HANDLING AND MODELLING IN GEOSPATIAL INFORMATION SCIENCE, 2010, 38 : 80 - 85
  • [2] Modeling and Application of Epidemic Risk Assessment Considering Spatial Interaction of Spatial-temporal Objects
    Wei, Yuanyuan
    Jiang, Nan
    Chen, Yunhai
    Li, Xiang
    Yang, Zhenkai
    [J]. Journal of Geo-Information Science, 2021, 23 (02) : 274 - 283
  • [3] On the discovery of spatial-temporal fluctuating patterns
    Shan-Yun Teng
    Cheng-Kuan Ou
    Kun-Ta Chuang
    [J]. International Journal of Data Science and Analytics, 2019, 8 : 57 - 75
  • [4] Spatial-temporal patterns in prokaryote genomes
    Hao, BL
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (11): : 2625 - 2630
  • [5] On the discovery of spatial-temporal fluctuating patterns
    Teng, Shan-Yun
    Ou, Cheng-Kuan
    Chuang, Kun-Ta
    [J]. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2019, 8 (01) : 57 - 75
  • [6] Spatial-temporal patterns and pedestrian simulation
    Hu, Nan
    Zhou, Suiping
    Wu, Zhongke
    Zhou, Mingquan
    Cho, Benjamin Eng Keong
    [J]. COMPUTER ANIMATION AND VIRTUAL WORLDS, 2010, 21 (3-4) : 387 - 399
  • [7] CONTRASTING PATTERNS IN THE ACQUISITION OF SPATIAL-TEMPORAL TERMS
    RICHARDS, MM
    HAWPE, LS
    [J]. JOURNAL OF EXPERIMENTAL CHILD PSYCHOLOGY, 1981, 32 (03) : 485 - 512
  • [8] Quantification of the spatial-temporal patterns of great ideas
    Li, Xiaokai
    Zhang, Peng
    Zeng, An
    [J]. PNAS NEXUS, 2023, 2 (03):
  • [9] Modeling spatial-temporal patterns in facial articulation
    Tao, H
    Huang, TS
    [J]. IEEE NONRIGID AND ARTICULATED MOTION WORKSHOP, PROCEEDINGS, 1997, : 54 - 60
  • [10] Modelling Spatial and Spatial-Temporal Data: a Bayesian Approach
    Chaturvedi, Anoop
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2020, 183 (04) : 1828 - 1829