One-dimensional collective migration of a proliferating cell monolayer

被引:24
|
作者
Recho, Pierre [1 ,2 ]
Ranft, Jonas [3 ]
Marcq, Philippe [2 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[2] Univ Paris 06, Sorbonne Univ, Inst Curie, CNRS,UMR 168,Lab Physcochim Curie, Paris, France
[3] Ecole Normale Super, Lab Phys Stat, 24 Rue Lhomond, F-75231 Paris 05, France
关键词
ELASTIC CONTINUUM MODEL; TRAVELING-WAVES; TUMOR-GROWTH; TISSUE; CYTOSKELETON; EPITHELIUM; DIFFUSION; DYNAMICS; CLOSURE; FORCES;
D O I
10.1039/c5sm02857d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The importance of collective cellular migration during embryogenesis and tissue repair asks for a sound understanding of underlying principles and mechanisms. Here, we address recent in vitro experiments on cell monolayers, which show that the advancement of the leading edge relies on cell proliferation and protrusive activity at the tissue margin. Within a simple viscoelastic mechanical model amenable to detailed analysis, we identify a key parameter responsible for tissue expansion, and we determine the dependence of the monolayer velocity as a function of measurable rheological parameters. Our results allow us to discuss the effects of pharmacological perturbations on the observed tissue dynamics.
引用
收藏
页码:2381 / 2391
页数:11
相关论文
共 50 条
  • [1] Mesenchymal cell migration on one-dimensional micropatterns
    Heyn, Johannes C. J.
    Radler, Joachim O.
    Falcke, Martin
    [J]. FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2024, 12
  • [2] Centrosome positioning in one-dimensional cell migration.
    Adlerz, K.
    Aranda-Espinoza, H.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2015, 26
  • [3] One-dimensional topography underlies three-dimensional fibrillar cell migration
    Doyle, Andrew D.
    Wang, Francis W.
    Matsumoto, Kazue
    Yamada, Kenneth M.
    [J]. JOURNAL OF CELL BIOLOGY, 2009, 184 (04): : 481 - 490
  • [4] Biased diffusion in a one-dimensional adsorbed monolayer
    Bénichou, O
    Cazabat, AM
    Lemarchand, A
    Moreau, M
    Oshanin, G
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1999, 97 (1-2) : 351 - 371
  • [5] Biased Diffusion in a One-Dimensional Adsorbed Monolayer
    O. Bénichou
    A. M. Cazabat
    A. Lemarchand
    M. Moreau
    G. Oshanin
    [J]. Journal of Statistical Physics, 1999, 97 : 351 - 371
  • [6] One-Dimensional Edge Contacts to a Monolayer Semiconductor
    Jain, Achint
    Szabo, Aron
    Parzefall, Markus
    Bonvin, Eric
    Taniguchi, Takashi
    Watanabe, Kenji
    Bharadwaj, Palash
    Luisier, Mathieu
    Novotny, Lukas
    [J]. NANO LETTERS, 2019, 19 (10) : 6914 - 6923
  • [7] Collective excitations of a one-dimensional quantum droplet
    Tylutki, Marek
    Astrakharchik, Grigori E.
    Malomed, Boris A.
    Petrov, Dmitry S.
    [J]. PHYSICAL REVIEW A, 2020, 101 (05)
  • [8] Relativistic collective diffusion in one-dimensional systems
    Lin, Gui-Wu
    Lam, Yu-Yiu
    Zheng, Dong-Qin
    Zhong, Wei-Rong
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (12):
  • [9] Spatial and temporal coordination of traction forces in one-dimensional cell migration
    Han, Sangyoon J.
    Rodriguez, Marita L.
    Al-Rekabi, Zeinab
    Sniadecki, Nathan J.
    [J]. CELL ADHESION & MIGRATION, 2016, 10 (05) : 529 - 539
  • [10] TILTING TRANSITIONS IN A ONE-DIMENSIONAL MODEL LIPID MONOLAYER
    GIANOTTI, RD
    GRIMSON, MJ
    SILBERT, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (10): : 2889 - 2896