PAC-Bayesian stochastic model selection

被引:104
|
作者
McAllester, DA [1 ]
机构
[1] AT&T Labs Res, Shannon Lab, Florham Pk, NJ 07932 USA
关键词
PAC learning; model averaging; posterior distribution; Gibbs distribution; PAC-Baysian learning;
D O I
10.1023/A:1021840411064
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
PAC-Bayesian learning methods combine the informative priors of Bayesian methods with distribution-free PAC guarantees. Stochastic model selection predicts a class label by stochastically sampling a classifier according to a "posterior distribution" on classifiers. This paper gives a PAC-Bayesian performance guarantee for stochastic model selection that is superior to analogous guarantees for deterministic model selection. The guarantee is stated in terms of the training error of the stochastic classifier and the KL-divergence of the posterior from the prior. It is shown that the posterior optimizing the performance guarantee is a Gibbs distribution. Simpler posterior distributions are also derived that have nearly optimal performance guarantees.
引用
收藏
页码:5 / 21
页数:17
相关论文
共 50 条
  • [1] PAC-Bayesian Stochastic Model Selection
    David A. McAllester
    [J]. Machine Learning, 2003, 51 : 5 - 21
  • [2] PAC-Bayesian theory for stochastic LTI systems
    Eringis, Deividas
    Leth, John
    Tan, Zheng-Hua
    Wisniewski, Rafal
    Esfahani, Alireza Fakhrizadeh
    Petreczky, Mihaly
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 6626 - 6633
  • [3] Wide stochastic networks: Gaussian limit and PAC-Bayesian training
    Clerico, Eugenio
    Deligiannidis, George
    Doucet, Arnaud
    [J]. INTERNATIONAL CONFERENCE ON ALGORITHMIC LEARNING THEORY, VOL 201, 2023, 201 : 447 - 470
  • [4] PAC-Bayesian Inequalities for Martingales
    Seldin, Yevgeny
    Laviolette, Francois
    Cesa-Bianchi, Nicolo
    Shawe-Taylor, John
    Auer, Peter
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (12) : 7086 - 7093
  • [5] Some PAC-Bayesian Theorems
    David A. McAllester
    [J]. Machine Learning, 1999, 37 : 355 - 363
  • [6] PAC-Bayesian generic chaining
    Audibert, JY
    Bousquet, O
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 : 1125 - 1132
  • [7] Some PAC-Bayesian theorems
    McAllester, DA
    [J]. MACHINE LEARNING, 1999, 37 (03) : 355 - 363
  • [8] PAC-Bayesian Collective Stability
    London, Ben
    Huang, Bert
    Taskar, Ben
    Getoor, Lise
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 585 - 594
  • [9] PAC-Bayesian Theory Meets Bayesian Inference
    Germain, Pascal
    Bach, Francis
    Lacoste, Alexandre
    Lacoste-Julien, Simon
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [10] PAC-Bayesian Theory for Transductive Learning
    Begin, Luc
    Germain, Pascal
    Laviolette, Francois
    Roy, Jean-Francis
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 105 - 113