Four-directional spatial regularization for sparse hyperspectral unmixing

被引:7
|
作者
Ahmad, Touseef [1 ,2 ]
Lyngdoh, Rosly Boy [1 ]
Sahadevan, Anand S. [1 ]
Raha, Soumyendu [2 ]
Gupta, Praveen Kumar [1 ]
Misra, Arundhati [1 ]
机构
[1] Space Applicat Ctr ISRO, Ahmadabad, Gujarat, India
[2] Indian Inst Sci, Bangalore, Karnataka, India
来源
JOURNAL OF APPLIED REMOTE SENSING | 2020年 / 14卷 / 04期
关键词
hyperspectral image; sparse unmixing; alternating direction multipliers method; total variation spatial regularization; NONNEGATIVE MATRIX FACTORIZATION; ALTERNATING DIRECTION METHOD; ALGORITHM; REGRESSION;
D O I
10.1117/1.JRS.14.046511
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A four-directional total variation technique is proposed to encapsulate the spatial contextual information for sparse hyperspectral image (HSI) unmixing. Traditional sparse total variation techniques explore gradient information along with the horizontal and vertical directions. As a result, spatial disparity due to high noise levels within the neighboring pixels are not considered while unmixing. Moreover, oversmoothing due to total variation may depreciate the spatial details in the abundance map. In this context, we propose a four-directional regularization technique (Sparse Unmixing with Splitting Augmented Lagrangian: Four-Directional Total Variation, SUnSAL-4DTV) for sparse unmixing. The four-directional total variation scheme is transformed into the fast-Fourier-transform domain to reduce the higher computational requirements. An alternating-direction-method-of-multipliers-based iterative scheme is proposed for solving the large-scale optimization problem. An adaptive scheme is introduced to update the regularization parameters to ensure faster convergence. Extensive numerical simulations were conducted on both simulated and real hyperspectral datasets to demonstrate the robustness of proposed technique. Comparative analysis on noisy (low signal-to-noise-ratio) HSIs shows the robustness of SUnSAL-4DTV over the state-of-the-art algorithms. (C) 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Four-directional spatial regularization for sparse hyperspectral unmixing
    Ahmad, Touseef
    Lyngdoh, Rosly Boy
    Sahadevan, Anand S.
    Raha, Soumyendu
    Gupta, Praveen Kumar
    Misra, Arundhati
    [J]. Journal of Applied Remote Sensing, 2020, 14 (04):
  • [2] Robust Double Spatial Regularization Sparse Hyperspectral Unmixing
    Li, Fan
    Zhang, Shaoquan
    Deng, Chengzhi
    Liang, Bingkun
    Cao, Jingjing
    Wang, Shengqian
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 12569 - 12582
  • [3] A Fast Multiscale Spatial Regularization for Sparse Hyperspectral Unmixing
    Borsoi, Ricardo Augusto
    Imbiriba, Tales
    Moreira Bermudez, Jose Carlos
    Richard, Cedric
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (04) : 598 - 602
  • [4] Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (11): : 4484 - 4502
  • [5] NONLOCAL SIMILARITY REGULARIZATION FOR SPARSE HYPERSPECTRAL UNMIXING
    Wang, Rui
    Li, Heng-Chao
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [6] Smooth and Sparse Regularization for NMF Hyperspectral Unmixing
    Salehani, Yaser Esmaeili
    Gazor, Saeed
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (08) : 3677 - 3692
  • [7] Local Abundance Regularization for Hyperspectral Sparse Unmixing
    Rizkinia, Mia
    Okuda, Masahiro
    [J]. 2016 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2016,
  • [8] Manifold regularization for sparse unmixing of hyperspectral images
    Liu, Junmin
    Zhang, Chunxia
    Zhang, Jiangshe
    Li, Huirong
    Gao, Yuelin
    [J]. SPRINGERPLUS, 2016, 5
  • [9] Spatial Regularization for the Unmixing of Hyperspectral Images
    Bauer, Sebastian
    Neumann, Florian
    Leon, Fernando Puente
    [J]. AUTOMATED VISUAL INSPECTION AND MACHINE VISION, 2015, 9530
  • [10] Fast Hyperspectral Unmixing Using a Multiscale Sparse Regularization
    Ince, Taner
    Dobigeon, Nicolas
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19