Seafloor Characterization Using Multibeam Echosounder Backscatter Data: Methodology and Results in the North Sea

被引:7
|
作者
Amiri-Simkooei, Alireza R. [1 ,2 ]
Koop, Leo [1 ]
van der Reijden, Karin J. [3 ]
Snellen, Mirjam [1 ,4 ,5 ]
Simons, Dick G. [1 ]
机构
[1] Delft Univ Technol, Fac Aerosp Engn, Acoust Grp, POB 5058, NL-2600 GB Delft, Netherlands
[2] Univ Isfahan, Fac Civil Engn & Transportat, Dept Geomat Engn, Esfahan 8174673441, Iran
[3] Univ Groningen, Conservat Ecol Grp, Groningen Inst Evolutionary Life Sci, POB 11103, NL-9700 CC Groningen, Netherlands
[4] Delft Univ Technol, Hydraul Engn, NL-2629 HS Delft, Netherlands
[5] DELTARES, POB 177, NL-2600 MH Delft, Netherlands
关键词
multibeam echosounder; seafloor sediment classification; geoacoustic inversion; angular calibration curve; least squares cubic spline approximation; ECHO-SOUNDER BACKSCATTER; CLASSIFICATION; MODEL; STRENGTH; SAND;
D O I
10.3390/geosciences9070292
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Seafloor characterization using multibeam echosounder (MBES) backscatter data is an active field of research. The observed backscatter curve (OBC) is used in an inversion algorithm with available physics-based models to determine the seafloor geoacoustic parameters. A complication is that the OBC cannot directly be coupled to the modeled backscatter curve (MBC) due to the correction of uncalibrated sonars. Grab samples at reference areas are usually required to estimate the angular calibration curve (ACC) prior to the inversion. We first attempt to estimate the MBES ACC without grab sampling by using the least squares cubic spline approximation method implemented in a differential evolution optimization algorithm. The geoacoustic parameters are then inverted over the entire area using the OBCs corrected for the estimated ACC. The results indicate that a search for at least three geoacoustic parameters is required, which includes the sediment mean grain size, roughness parameter, and volume scattering parameter. The inverted mean grain sizes are in agreement with grab samples, indicating reliability and stability of the proposed method. Furthermore, the interaction between the geoacoustic parameters and Bayesian acoustic classes is investigated. It is observed that higher backscatter values, and thereby higher acoustic classes, should not only be attributed to (slightly) coarser sediment, especially in a homogeneous sedimentary environment such as the Brown Bank, North Sea. Higher acoustic classes should also be attributed to larger seafloor roughness and volume scattering parameters, which are not likely intrinsic to only sediment characteristics but also to other contributing factors.
引用
下载
收藏
页数:23
相关论文
共 50 条
  • [1] Seafloor change detection using multibeam echosounder backscatter: case study on the Belgian part of the North Sea
    Giacomo Montereale-Gavazzi
    Marc Roche
    Xavier Lurton
    Koen Degrendele
    Nathan Terseleer
    Vera Van Lancker
    Marine Geophysical Research, 2018, 39 : 229 - 247
  • [2] Using Multibeam Echosounder Backscatter To Characterize Seafloor Features
    Hewitt, Antony
    Salisbury, Richard
    Wilson, Jerry
    SEA TECHNOLOGY, 2010, 51 (09) : 10 - 13
  • [3] Seafloor change detection using multibeam echosounder backscatter: case study on the Belgian part of the North Sea
    Montereale-Gavazzi, Giacomo
    Roche, Marc
    Lurton, Xavier
    Degrendele, Koen
    Terseleer, Nathan
    Van Lancker, Vera
    MARINE GEOPHYSICAL RESEARCH, 2018, 39 (1-2) : 229 - 247
  • [4] Using Multibeam Echosounder data for a GIS-ready Seafloor Characterization in the Adriatic Sea
    Tassetti, A. N.
    Malaspina, S.
    Punzo, E.
    Fabi, G.
    Mancini, A.
    OCEANS 2015 - GENOVA, 2015,
  • [5] Analysis of seafloor backscatter strength dependence on the survey azimuth using multibeam echosounder data
    Xavier Lurton
    Dimitrios Eleftherakis
    Jean-Marie Augustin
    Marine Geophysical Research, 2018, 39 : 183 - 203
  • [6] Analysis of seafloor backscatter strength dependence on the survey azimuth using multibeam echosounder data
    Lurton, Xavier
    Eleftherakis, Dimitrios
    Augustin, Jean-Marie
    MARINE GEOPHYSICAL RESEARCH, 2018, 39 (1-2) : 183 - 203
  • [7] Acoustic Seafloor Classification Using the Weyl Transform of Multibeam Echosounder Backscatter Mosaic
    Zhao, Ting
    Montereale Gavazzi, Giacomo
    Lazendic, Srdan
    Zhao, Yuxin
    Pizurica, Aleksandra
    REMOTE SENSING, 2021, 13 (09)
  • [8] Seafloor Classification in a Sand Wave Environment on the Dutch Continental Shelf Using Multibeam Echosounder Backscatter Data
    Koop, Leo
    Amiri-Simkooei, Alireza
    van der Reijden, Karin J.
    O'Flynn, Sarah
    Snellen, Mirjam
    Simons, Dick G.
    GEOSCIENCES, 2019, 9 (03)
  • [9] Measurement of Seafloor Acoustic Backscatter Angular Dependence at 150 kHz Using a Multibeam Echosounder
    Trzcinska, Karolina
    Tegowski, Jaroslaw
    Pocwiardowski, Pawel
    Janowski, Lukasz
    Zdroik, Jakub
    Kruss, Aleksandra
    Rucinska, Maria
    Lubniewski, Zbigniew
    Schneider von Deimling, Jens
    REMOTE SENSING, 2021, 13 (23)
  • [10] Test Methodology for Evaluation of Linearity of Multibeam Echosounder Backscatter Performance
    Greenaway, S. F.
    Weber, T. C.
    OCEANS 2010, 2010,