A PARAMETER-SELF-ADJUSTING LEVENBERG-MARQUARDT METHOD FOR SOLVING NONSMOOTH EQUATIONS

被引:5
|
作者
Qi, Liyan [1 ,2 ]
Xiao, Xiantao [1 ]
Zhang, Liwei [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Dalian Ocean Univ, Sch Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Levenberg-Marquardt method; Nonsmooth equations; Nonlinear complementarity problems; NONLINEAR EQUATIONS; NEWTON METHOD; CONVERGENCE; ALGORITHMS;
D O I
10.4208/jcm.1512-m2015-0333
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A parameter-self-adjusting Levenberg-Marquardt method (PSA-LMM) is proposed for solving a nonlinear system of equations F (x) = 0, where F : R-n -> Rn is a semismooth mapping. At each iteration, the LM parameter mu k is automatically adjusted based on the ratio between actual reduction and predicted reduction. The global convergence of PSA-LMM for solving semismooth equations is demonstrated. Under the BD-regular condition, we prove that PSA-LMM is locally superlinearly convergent for semismooth equations and locally quadratically convergent for strongly semismooth equations. Numerical results for solving nonlinear complementarity problems are presented.
引用
收藏
页码:317 / 338
页数:22
相关论文
共 50 条
  • [1] A new Levenberg-Marquardt type algorithm for solving nonsmooth constrained equations
    Ling, Chen
    Wang, Guifeng
    He, Hongjin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 229 : 107 - 122
  • [2] ON THE GLOBAL CONVERGENCE OF A PARAMETER-ADJUSTING LEVENBERG-MARQUARDT METHOD
    Qi, Liyan
    Xiao, Xiantao
    Zhang, Liwei
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2015, 5 (01): : 25 - 36
  • [3] Levenberg-Marquardt method for solving systems of absolute value equations
    Iqbal, Javed
    Iqbal, Asif
    Arif, Muhammad
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 282 : 134 - 138
  • [4] A modified Levenberg-Marquardt method for solving system of nonlinear equations
    Chen, Liang
    Ma, Yanfang
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (02) : 2019 - 2040
  • [5] A nonsmooth Levenberg-Marquardt method for solving semi-infinite programming problems
    Ma, Cheng
    Wang, Changyu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (02) : 633 - 642
  • [6] A Modified Levenberg-Marquardt Method for Nonsmooth Equations with Finitely Many Maximum Functions
    Du, Shou-qiang
    Gao, Yan
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2008, 2008
  • [7] A LEVENBERG-MARQUARDT METHOD FOR NONSMOOTH REGULARIZED LEAST SQUARES
    Aravkin, Aleksandr y.
    Baraldi, Robert
    Orban, Dominique
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (04): : A2557 - A2581
  • [8] A nonsmooth Levenberg-Marquardt method for vertical complementarity problems
    Linsen Song
    Yan Gao
    [J]. Numerical Algorithms, 2017, 76 : 473 - 485
  • [9] A nonsmooth Levenberg-Marquardt method for vertical complementarity problems
    Song, Linsen
    Gao, Yan
    [J]. NUMERICAL ALGORITHMS, 2017, 76 (02) : 473 - 485
  • [10] A Levenberg-Marquardt method for solving semi-symmetric tensor equations
    Lv, Chang-Qing
    Ma, Chang-Feng
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 332 : 13 - 25