Linear transformations and the k-means clustering algorithm:: Applications to clustering curves

被引:53
|
作者
Tarpey, Thaddeus [1 ]
机构
[1] Wright State Univ, Dept Math & Stat, Dayton, OH 45435 USA
来源
AMERICAN STATISTICIAN | 2007年 / 61卷 / 01期
关键词
allometric extension; canonical discriminant analysis; orthogonal design matrix; principal component analysis;
D O I
10.1198/000313007X171016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Functional data can be clustered by plugging estimated regression coefficients from individual curves into the k-means algorithm. Clustering results can differ depending on how the curves are fit to the data. Estimating curves using different sets of basis functions corresponds to different linear transformations of the data. k-means clustering is not invariant to linear transformations of the data. The optimal linear transformation for clustering will stretch the distribution so that the primary direction of variability aligns with actual differences in the clusters. It is shown that clustering the raw data will often give results similar to clustering regression coefficients obtained using an orthogonal design matrix. Clustering functional data using an L-2 metric on function space can be achieved by clustering a suitable linear transformation of the regression coefficients. An example where depressed individuals are treated with an antidepressant is used for illustration.
引用
收藏
页码:34 / 40
页数:7
相关论文
共 50 条
  • [1] Research on k-means Clustering Algorithm An Improved k-means Clustering Algorithm
    Shi Na
    Liu Xumin
    Guan Yong
    [J]. 2010 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS (IITSI 2010), 2010, : 63 - 67
  • [2] Improved k-means clustering algorithm and its applications
    Qi, Hui
    Li, Jinqing
    Di, Xiaoqiang
    Ren, Weiwu
    Zhang, Fengrong
    [J]. Recent Patents on Engineering, 2019, 13 (04) : 403 - 409
  • [3] IMPROVEMENT IN K-MEANS CLUSTERING ALGORITHM FOR DATA CLUSTERING
    Rajeswari, K.
    Acharya, Omkar
    Sharma, Mayur
    Kopnar, Mahesh
    Karandikar, Kiran
    [J]. 1ST INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION ICCUBEA 2015, 2015, : 367 - 369
  • [4] An optimizing algorithm of non-linear K-means clustering
    [J]. 2016, Science and Engineering Research Support Society (09):
  • [5] Modified k-Means Clustering Algorithm
    Patel, Vaishali R.
    Mehta, Rupa G.
    [J]. COMPUTATIONAL INTELLIGENCE AND INFORMATION TECHNOLOGY, 2011, 250 : 307 - +
  • [6] An Improved K-means Clustering Algorithm
    Wang Yintong
    Li Wanlong
    Gao Rujia
    [J]. 2012 WORLD AUTOMATION CONGRESS (WAC), 2012,
  • [7] Granular K-means Clustering Algorithm
    Zhou, Chenglong
    Chen, Yuming
    Zhu, Yidong
    [J]. Computer Engineering and Applications, 2023, 59 (13) : 317 - 324
  • [8] Unsupervised K-Means Clustering Algorithm
    Sinaga, Kristina P.
    Yang, Miin-Shen
    [J]. IEEE ACCESS, 2020, 8 : 80716 - 80727
  • [9] Modified K-means clustering algorithm
    Li, Wei
    [J]. CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 4, PROCEEDINGS, 2008, : 618 - 621
  • [10] The MinMax k-Means clustering algorithm
    Tzortzis, Grigorios
    Likas, Aristidis
    [J]. PATTERN RECOGNITION, 2014, 47 (07) : 2505 - 2516