Model validation and controller design for vibration suppression of flexible rotor using AMB

被引:18
|
作者
Jeon, S
Ahn, HJ
Han, DC [1 ]
机构
[1] Seoul Natl Univ, Sch Mech & Aerosp Engn, Inst Adv Machinery & Design, Seoul 151745, South Korea
[2] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[3] Seoul Natl Univ, Sch Mech & Aerosp Engn, Seoul 151745, South Korea
来源
KSME INTERNATIONAL JOURNAL | 2002年 / 16卷 / 12期
关键词
active magnetic bearing; flexible rotor; vibration suppression; LQG control;
D O I
10.1007/BF03021660
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper discusses the model validation and vibration suppression of an AMB flexible rotor via additional LQG controller. The main difficulty in the vibration suppression of the flexible rotor using AMB is to realize a controller that can minimize resonance without injuring the stabilized rigid modes. In order to solve this problem, simple scheme for system modeling and controller design are developed. Firstly, the AMB flexible rotor is stabilized with a PID controller, which leads to a new stable rotor-bearing system. Then, authors propose the model validation procedure using measured open-loop frequency responses to obtain an accurate model of the AMB flexible rotor system. After that, LQG controller with modal weighting is designed to suppress resonances of the stable rotor-bearing system. Due to the poor controllability and observability of flexible modes compared to rigid ones, balancing of two Gramians is prerequisite for the fair LQG controller design. Simulation with step disturbance and experimental results of unbalance response up to 10,000 rpm verified the effectiveness of the proposed scheme.
引用
收藏
页码:1583 / 1593
页数:11
相关论文
共 50 条
  • [1] Model validation and controller design for vibration suppression of flexible rotor using AMB
    Soo Jeon
    Hyeong-Joon Ahn
    Dong-Chul Han
    [J]. KSME International Journal, 2002, 16 : 1583 - 1593
  • [2] VIBRATION SUPPRESSION OF A FLEXIBLE ROTOR USING ACTIVE MAGNETIC BEARINGS (AMB)
    Stimac, Goranka
    Braut, Sanjin
    Zigulic, Roberto
    [J]. TRANSACTIONS OF FAMENA, 2011, 35 (03) : 27 - 38
  • [3] Vibration Suppression of Flywheel AMB System with Flexible Rotor Using Backstepping Control
    Ren, Ming
    Xuan, Dong-ji
    Wang, Chun-chun
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL ASIA CONFERENCE ON INDUSTRIAL ENGINEERING AND MANAGEMENT INNOVATION, VOL 2: INNOVATION AND PRACTICE OF INDUSTRIAL ENGINEERING AND MANAGMENT, 2016, : 635 - 646
  • [4] Resonance Vibration Control for AMB Flexible Rotor System Based on μ-Synthesis Controller
    Ran, Shaolin
    Hu, Yefa
    Wu, Huachun
    Cheng, Xin
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [5] Controller design for vibration suppression of slewing flexible structures
    Liu, X
    Onoda, J
    [J]. COMPUTERS & STRUCTURES, 1999, 70 (01) : 119 - 128
  • [6] Suppression of Imbalance Vibration in AMB-Rotor Systems Using Adaptive Frequency Estimator
    Chen, Qi
    Liu, Gang
    Han, Bangcheng
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (12) : 7696 - 7705
  • [7] A Robust Vibration Suppression Controller Design for Space Flexible Structures
    Zhang Long
    Duan Guangren
    [J]. PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 4020 - 4024
  • [8] Controller design for flexible structure vibration suppression with robustness to contacts
    Cole, Matthew O. T.
    Wongratanaphisan, Theeraphong
    Ponputhithum, Radom
    Fakkaew, Wichaphon
    [J]. AUTOMATICA, 2008, 44 (11) : 2876 - 2883
  • [9] Saturation-based active controller for vibration suppression of a four-degree-of-freedom rotor–AMB system
    M. Eissa
    N. A. Saeed
    W. A. El-Ganini
    [J]. Nonlinear Dynamics, 2014, 76 : 743 - 764
  • [10] Harmonic Vibration Suppression of AMB Rotor Based on VSS Repetitive Controller Considering Mass Imbalance and Sensor Runout
    Cui, Peiling
    Li, Yanbin
    Zhou, Xinxiu
    Liu, Zhiyuan
    Li, Jinlei
    Du, Liang
    Wu, Yang
    [J]. 2021 24TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2021), 2021, : 483 - 488