Bifurcations and Synchronization in Networks of Unstable Reaction-Diffusion Systems

被引:4
|
作者
Miranville, Alain [1 ,2 ,3 ]
Cantin, Guillaume [4 ]
Aziz-Alaoui, M. A. [4 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang, Henan, Peoples R China
[2] Univ Poitiers, Lab I3M, Equipe DACTIM MIS, UMR CNRS 7348, Teleport 2,11,Blvd Marie & Pierre Curie, F-86073 Poitiers 9, France
[3] Univ Poitiers, Lab Math & Applicat, Equipe DACTIM MIS, UMR CNRS 7348, Teleport 2,11,Blvd Marie & Pierre Curie, F-86073 Poitiers 9, France
[4] Univ Havre Normandie, Lab Math Appl Havre, FR CNRS 3335, Inst Syst Complexes Normandie,UFR Sci & Tech, 25 Rue Philippe Lebon,BP1123, F-76063 Le Havre, France
关键词
Complex network; Synchronization; Attractor; Unstable manifold; Spectrum perturbation; 35A01; 35B40; 35B41; 35K57; COMPLEX NETWORKS; EXPONENTIAL ATTRACTORS; DIMENSION ESTIMATE; PERTURBATIONS; EQUATIONS;
D O I
10.1007/s00332-021-09701-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the analysis of the dynamics of a complex network of unstable reaction-diffusion systems. We demonstrate the existence of a non-empty parameter regime for which synchronization occurs in non-trivial attractors. We establish a lower bound of the dimension of the global attractor in an innovative manner, by proving a novel theorem of continuity of the unstable manifold, for which we invoke a principle of spectrum perturbation of non-bounded operators. Finally, we exhibit a co-dimension 2 bifurcation of the unstable manifold which shows that synchronization is compatible with instabilities.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Bifurcations and Synchronization in Networks of Unstable Reaction–Diffusion Systems
    Alain Miranville
    Guillaume Cantin
    M. A. Aziz-Alaoui
    [J]. Journal of Nonlinear Science, 2021, 31
  • [2] Synchronization of delayed coupled reaction-diffusion systems on networks
    Li, Wenxue
    Chen, Tianrui
    Xu, Dianguo
    Wang, Ke
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (11) : 2216 - 2228
  • [3] Bifurcations in reaction-diffusion systems in chaotic flows
    Menon, SN
    Gottwald, GA
    [J]. PHYSICAL REVIEW E, 2005, 71 (06)
  • [4] SECONDARY BIFURCATIONS IN SPHERICAL REACTION-DIFFUSION SYSTEMS
    HUNDING, A
    BILLING, GD
    [J]. CHEMICAL PHYSICS, 1980, 45 (03) : 359 - 369
  • [5] Pattern selection in reaction-diffusion systems with competing bifurcations
    Dewel, G
    DeWit, A
    Metens, S
    Verdasca, J
    Borckmans, P
    [J]. PHYSICA SCRIPTA, 1996, T67 : 51 - 57
  • [7] BIFURCATIONS AND LYAPUNOV EXPONENTS IN CHAOTIC REACTION-DIFFUSION SYSTEMS
    NAGASHIMA, H
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1995, 84 (1-2) : 303 - 309
  • [8] Reaction-diffusion systems with temperature feedback: Bifurcations and stability
    Leung, AW
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (06) : 3379 - 3390
  • [9] Amplitude equations for wave bifurcations in reaction-diffusion systems
    Villar-Sepulveda, Edgardo
    Champneys, Alan
    [J]. NONLINEARITY, 2024, 37 (08)
  • [10] Synchronization in reaction-diffusion systems with multiple pacemakers
    Nolet, F. E.
    Rombouts, J.
    Gelens, L.
    [J]. CHAOS, 2020, 30 (05)