A physical space approach to wave equation bilinear estimates

被引:16
|
作者
Klainerman, S [1 ]
Rodnianski, I
Tao, T
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2002年 / 87卷 / 1期
关键词
D O I
10.1007/BF02868479
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Bilinear estimates for the wave equation in Minkowski space are normally proven using the Fourier transform and Plancherel's theorem. However, such methods are difficult to carry over to non-flat situations (such as wave equations with rough metrics or connections with non-zero curvature). In this note, we describe an alternative physical space approach which relies on vector fields, energy estimates as well as tube localization, splitting into coarse and fine scales, and induction on scales (in the spirit of Wolff [29], [30]).
引用
收藏
页码:299 / 336
页数:38
相关论文
共 50 条
  • [1] A physical space approach to wave equation bilinear estimates
    Sergiu Klainerman
    Igor Rodnianski
    Terence Tao
    [J]. Journal d'Analyse Mathématique, 2002, 87 : 299 - 336
  • [2] Physical Space Approach to Wave Equation Bilinear Estimates Revisit
    Wang, Sheng
    Zhou, Yi
    [J]. ANNALS OF PDE, 2024, 10 (02)
  • [3] SOME SHARP BILINEAR SPACE-TIME ESTIMATES FOR THE WAVE EQUATION
    Bez, Neal
    Jeavons, Chris
    Ozawa, Tohru
    [J]. MATHEMATIKA, 2016, 62 (03) : 719 - 737
  • [4] Microlocal analysis, bilinear estimates and cubic quasilinear wave equation
    Bahouri, H
    Chemin, JY
    [J]. ASTERISQUE, 2003, (284) : 93 - 141
  • [5] Bilinear space-time estimates for homogeneous wave equations
    Foschi, D
    Klainerman, S
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2000, 33 (02): : 211 - 274
  • [6] ON LEBESGUE SPACE ESTIMATES FOR THE WAVE-EQUATION
    HARMSE, J
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (01) : 229 - 248
  • [7] PHYSICAL SPACE PROOF OF BILINEAR ESTIMATES AND APPLICATIONS TO NONLINEAR DISPERSIVE EQUATIONS
    Tu, Li
    Zhou, Yi
    [J]. arXiv,
  • [8] BILINEAR FOURIER RESTRICTION ESTIMATES RELATED TO THE 2D WAVE EQUATION
    Selberg, Sigmund
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2011, 16 (7-8) : 667 - 690
  • [9] Modulation space estimates for damped fractional wave equation
    ChunJie Zhang
    YuHuai Zhang
    FangFang Ren
    [J]. Science China Mathematics, 2016, 59 : 687 - 696
  • [10] Modulation space estimates for damped fractional wave equation
    Zhang ChunJie
    Zhang YuHuai
    Ren FangFang
    [J]. SCIENCE CHINA-MATHEMATICS, 2016, 59 (04) : 687 - 696