Donagi-Markman cubic for Hitchin systems

被引:0
|
作者
Balduzzi, David [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Donagi-Markman cubic is the differential of the period map for algebraic completely integrable systems. Here we prove a formula for the cubic in the case of Hitchin's system for arbitrary semisimple g. This was originally stated (without proof) by Pantev for sl(n).
引用
收藏
页码:923 / 933
页数:11
相关论文
共 50 条
  • [1] DONAGI-MARKMAN CUBIC FOR THE GENERALIZED HITCHIN SYSTEM
    Bruzzo, Ugo
    Dalakov, Peter
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (02)
  • [2] Hyperpolygons and Hitchin Systems
    Fisher, Jonathan
    Rayan, Steven
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (06) : 1839 - 1870
  • [3] Calogero–Moser Systems and Hitchin Systems
    J. C. Hurtubise
    E. Markman
    [J]. Communications in Mathematical Physics, 2001, 223 : 533 - 552
  • [4] Hitchin Systems on Hyperelliptic Curves
    P. I. Borisova
    O. K. Sheinman
    [J]. Proceedings of the Steklov Institute of Mathematics, 2020, 311 : 22 - 35
  • [5] Langlands duality for Hitchin systems
    R. Donagi
    T. Pantev
    [J]. Inventiones mathematicae, 2012, 189 : 653 - 735
  • [6] Hitchin Systems on Hyperelliptic Curves
    Borisova, P. I.
    Sheinman, O. K.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2020, 311 (01) : 22 - 35
  • [7] Hitchin systems at low genera
    Gawedzki, K
    Tran-Ngoc-Bich, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (07) : 4695 - 4712
  • [8] Hitchin systems and KP equations
    Li, YC
    Mulase, M
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (02) : 227 - 244
  • [9] Langlands duality for Hitchin systems
    Donagi, R.
    Pantev, T.
    [J]. INVENTIONES MATHEMATICAE, 2012, 189 (03) : 653 - 735
  • [10] The Atiyah-Hitchin bracket and the cubic nonlinear Schrodinger equation
    Vaninsky, K. L.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH PAPERS, 2006,