Computational Mutagenesis at the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Binding Interface: Comparison with Experimental Evidence

被引:29
|
作者
Laurini, Erik [1 ]
Marson, Domenico [1 ]
Aulic, Suzana [1 ]
Fermeglia, Alice [1 ]
Pricl, Sabrina [1 ,2 ]
机构
[1] Univ Trieste, Mol Biol & Nanotechnol Lab MolBNL UniTS, DEA, I-34127 Trieste, Italy
[2] Univ Lodz, Fac Biol & Environm Protect, Dept Gen Biophys, PL-90136 Lodz, Poland
关键词
SARS-CoV-2 spike protein; ACE2; receptor binding domain; molecular dynamics; computational mutagenesis; molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA); free energy of binding; RECEPTOR; INHIBITOR; ACE2; RESISTANCE; MUTATIONS; MECHANISM; SARS;
D O I
10.1021/acsnano.0c10833
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The coronavirus disease-2019 (COVID-19) pandemic, caused by the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), started in China during late 2019 and swiftly spread worldwide. Since COVID-19 emergence, many therapeutic regimens have been relentlessly explored, and although two vaccines have just received emergency use authorization by different governmental agencies, antiviral therapeutics based neutralizing antibodies and small-drug inhibitors can still be vital viable options to prevent and treat SARS-CoV-2 infections. The viral spike glycoprotein (S-protein) is the key molecular player that promotes human host cellular invasion via recognition of and binding to the angiotensin-converting enzyme 2 gene (ACE2). In this work, we report the results obtained by mutating in silico the 18 ACE2 residues and the 14 S-protein receptor binding domain (S-RBDCoV-2) residues that contribute to the receptor/viral protein binding interface. Specifically, each wild-type protein-protein interface residue was replaced by a hydrophobic (isoleucine), polar (serine and threonine), charged (aspartic acid/glutamic acid and lysine/arginine), and bulky (tryptophan) residue, respectively, in order to study the different effects exerted by nature, shape, and dimensions of the mutant amino acids on the structure and strength of the resulting binding interface. The computational results were next validated a posteriori against the corresponding experimental data, yielding an overall agreement of 92%. Interestingly, a non-negligible number of mis-sense variations were predicted to enhance ACE2/S-RBDCoV-2 binding, including the variants Q24T, T27D/K/W, D30E, H34S7T/K, E35D, Q42K, L79I/W, R357K, and R393K on ACE2 and L455D/W, F456K/W, Q493K, N501T, and Y505W on S-RBDCoV-2, respectively.
引用
收藏
页码:6929 / 6948
页数:20
相关论文
共 50 条
  • [1] Computational Insights into the Conformational Accessibility and Binding Strength of SARS-CoV-2 Spike Protein to Human Angiotensin-Converting Enzyme 2
    Peng, Cheng
    Zhu, Zhengdan
    Shi, Yulong
    Wang, Xiaoyu
    Mu, Kaijie
    Yang, Yanqing
    Zhang, Xinben
    Xu, Zhijian
    Zhu, Weiliang
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (24): : 10482 - 10488
  • [2] Computational optimization of angiotensin-converting enzyme 2 for SARS-CoV-2 Spike molecular recognition
    Di Rienzo, Lorenzo
    Monti, Michele
    Milanetti, Edoardo
    Miotto, Mattia
    Boffi, Alberto
    Tartaglia, Gian Gaetano
    Ruocco, Giancarlo
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3006 - 3014
  • [3] SARS-CoV-2 spike protein variant binding affinity to an angiotensin-converting enzyme 2 fusion glycoproteins
    Matthews, Alicia M.
    Biel, Thomas
    Ortega-Rodriguez, Uriel
    Falkowski, Vincent
    Bush, Xin
    Faison, Talia
    Xie, Hang
    Agarabi, Cyrus
    Rao, V. Ashutosh
    Ju, Tongzhong
    [J]. PLOS ONE, 2022, 17 (12):
  • [4] In silico investigation of critical binding pattern in SARS-CoV-2 spike protein with angiotensin-converting enzyme 2
    Farzaneh Jafary
    Sepideh Jafari
    Mohamad Reza Ganjalikhany
    [J]. Scientific Reports, 11
  • [5] In silico investigation of critical binding pattern in SARS-CoV-2 spike protein with angiotensin-converting enzyme 2
    Jafary, Farzaneh
    Jafari, Sepideh
    Ganjalikhany, Mohamad Reza
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [6] SARS-CoV-2 Spike Protein Enhances Carboxypeptidase Activity of Angiotensin-Converting Enzyme 2
    Mendiola-Salazar, Xochitl Andrea
    Munguia-Laguna, Melanie A.
    Franco, Martha
    Cano-Martinez, Agustina
    Sosa, Jose Santamaria
    Bautista-Perez, Rocio
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (11)
  • [7] Computational Alanine Scanning and Structural Analysis of the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Complex
    Laurini, Erik
    Marson, Domenico
    Aulic, Suzana
    Fermeglia, Maurizio
    Pricl, Sabrina
    [J]. ACS NANO, 2020, 14 (09) : 11821 - 11830
  • [8] Indigo plant leaf extract inhibits the binding of SARS-CoV-2 spike protein to angiotensin-converting enzyme 2
    Hagiyama, Man
    Takeuchi, Fuka
    Sugano, Aki
    Yoneshige, Azusa
    Inoue, Takao
    Wada, Akihiro
    Kajiyama, Hiroshi
    Takaoka, Yutaka
    Sasaki, Kenroh
    Ito, Akihiko
    [J]. EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2022, 23 (04)
  • [9] Computational insights into differential interaction of mammalian angiotensin-converting enzyme 2 with the SARS-CoV-2 spike receptor binding domain
    Lupala, Cecylia Severin
    Kumar, Vikash
    Su, Xiao-Dong
    Wu, Chun
    Liu, Haiguang
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 141
  • [10] Regulation Mechanism for the Binding between the SARS-CoV-2 Spike Protein and Host Angiotensin-Converting Enzyme II
    Chen, Haiyi
    Kang, Yu
    Duan, Mojie
    Hou, Tingjun
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (27): : 6252 - 6261