Asymptotics of maximum likelihood estimator in a two-phase linear regression model

被引:31
|
作者
Koul, HL
Qian, L
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
[2] Florida Atlantic Univ, Boca Raton, FL 33431 USA
关键词
change-point estimator; fixed jump size; n-consistency; compound Poisson process;
D O I
10.1016/S0378-3758(02)00273-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers two-phase random design linear regression models with arbitrary error densities and where the regression function has a fixed jump at the true change-point. It obtains the consistency and the limiting distributions of maximum likelihood estimators of the underlying parameters in these models. The left end point of the maximizing interval with respect to the change point, herein called the maximum likelihood estimator (r) over cap (n) of the change-point parameter r, is shown to be n-consistent and the underlying likelihood process, as a process in the standardized change-point parameter, is shown to converge weakly to a compound Poisson process. This process obtains maximum over a bounded interval and n((r) over cap (n) - r) converges weakly to the left end point of this interval. These results are different from those available in the literature for the case of the two-phase linear regression models when jump sizes tend to zero as n tends to infinity. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:99 / 119
页数:21
相关论文
共 50 条
  • [1] A robust adaptive modified maximum likelihood estimator for the linear regression model
    Acitas, Sukru
    Filzmoser, Peter
    Senoglu, Birdal
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (07) : 1394 - 1414
  • [2] Maximum likelihood estimator in a multi-phase random regression model
    Ciuperca, Gabriela
    Dapzol, Nicolas
    [J]. STATISTICS, 2008, 42 (04) : 363 - 381
  • [3] ON THE MAXIMUM LIKELIHOOD ESTIMATOR IN THE GAMMA REGRESSION MODEL
    Rydlewski, Jerzy P.
    [J]. OPUSCULA MATHEMATICA, 2009, 29 (03) : 305 - 312
  • [4] Parallel maximum likelihood estimator for multiple linear regression models
    Guo, Guangbao
    You, Wenjie
    Qian, Guoqi
    Shao, Wei
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 273 : 251 - 263
  • [5] ON THE MAXIMUM LIKELIHOOD ESTIMATOR IN THE GENERALIZED BETA REGRESSION MODEL
    Rydlewski, Jerzy P.
    Mielczarek, Dominik
    [J]. OPUSCULA MATHEMATICA, 2012, 32 (04) : 761 - 774
  • [6] Asymptotics of M-estimators in two-phase linear regression models
    Koul, HL
    Qian, LF
    Surgailis, D
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 103 (01) : 123 - 154
  • [7] Modified maximum likelihood estimator for censored linear regression model with two-piece generalized t distributionModified maximum likelihood estimator...C. Lian et al.
    Chengdi Lian
    Camila Borelli Zeller
    Ke Yang
    Weihu Cheng
    [J]. Statistical Papers, 2025, 66 (2)
  • [8] Reducing the bias of the maximum likelihood estimator for the Poisson regression model
    Giles, David E.
    Feng, Hui
    [J]. ECONOMICS BULLETIN, 2011, 31 (04): : 2933 - 2943
  • [9] The breakdown behavior of the maximum likelihood estimator in the logistic regression model
    Croux, C
    Flandre, C
    Haesbroeck, G
    [J]. STATISTICS & PROBABILITY LETTERS, 2002, 60 (04) : 377 - 386
  • [10] Asymptotics of the maximum likelihood estimator in hidden Markov models
    Douc, R
    Matias, C
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02): : 135 - 138