The Effect of the Temperature Difference on the Performance of Photovoltaic-Thermoelectric Hybrid Systems

被引:2
|
作者
El Mliles, M. [1 ]
El Kouari, Y. [1 ]
Hajjaji, A. [2 ]
机构
[1] Hassan II Casablanca Univ, FST, Condensed Matter Phys & Renewable Energies Lab, Mohammadia 20650, Morocco
[2] Chouaib Doukkali Univ, Natl Sch Appl Sci, Engn Sci Energy Lab, El Jadida 24002, Morocco
关键词
SOLAR-CELLS; EFFICIENCY; PV; MODEL;
D O I
10.1115/1.4043550
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The performance of the photovoltaic-thermoelectric (PV-TE) hybrid system was examined using three types of PV cells and a thermoelectric generator (TEG) based on bismuth telluride. The investigated PV cells are amorphous silicon (a-Si), monocrystalline silicon (monoSi), and cadmium telluride (CdTe). The results showed that the TEG contribution can overcome the degradation of the PV cell efficiency with increasing temperature at the minimal working condition. This condition corresponds to the critical temperature difference across the TEG that guarantees the same efficiency of the hybrid system as that of the PV cell alone at 298 K. The obtained results showed that the critical temperature difference is 13.3 K, 44.1 K, and 105 K for the a-Si, CdTe, and mono-Si PV cell, respectively. In addition, the general expression of the temperature difference across the TEG needed for an efficiency enhancement by a ratio of r compared with a PV cell alone at 298 K was given. For an efficiency enhancement by 5%(r = 1.05), the temperature difference required is 30.2 K, 61.3 K, and 116.1 K for the a-Si, CdTe, and mono-Si PV cells, respectively. These values cannot be achieved practically only in the case of the a-Si PV cell. Moreover, a TE material with a high power factor can reduce this temperature difference and improve the performance of the hybrid system. This work provides a tool that may be useful during the selection of the PV cell and the TE material for the hybrid system.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Performance estimation of photovoltaic-thermoelectric hybrid systems
    Zhang, Jin
    Xuan, Yimin
    Yang, Lili
    [J]. ENERGY, 2014, 78 : 895 - 903
  • [2] Performance comparison investigation on solar photovoltaic-thermoelectric generation and solar photovoltaic-thermoelectric cooling hybrid systems under different conditions
    Wu, Shuang-Ying
    Zhang, Yi-Chen
    Xiao, Lan
    Shen, Zu-Guo
    [J]. INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2018, 37 (06) : 533 - 548
  • [3] Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems
    Li, Dianhong
    Xuan, Yimin
    Li, Qiang
    Hong, Hui
    [J]. ENERGY, 2017, 126 : 343 - 351
  • [4] TIME-DEPENDENT PHOTOVOLTAIC-THERMOELECTRIC HYBRID SYSTEMS
    Dong, Siyu
    Shih, Tien-Mo
    Lin, Weiqing
    Cai, Xiuhong
    Chang, Richard Ru-Gin
    Chen, Zhong
    [J]. NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2014, 66 (04) : 402 - 419
  • [5] Photovoltaic-thermoelectric hybrid systems: A general optimization methodology
    Kraemer, D.
    Hu, L.
    Muto, A.
    Chen, X.
    Chen, G.
    Chiesa, M.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (24)
  • [6] Reliable power supply with photovoltaic-thermoelectric hybrid systems
    Steinhuser, A
    Hille, G
    Kugele, R
    Roth, W
    Schulz, W
    [J]. TELESCON 97, BUDAPEST - THE SECOND INTERNATIONAL TELECOMMUNICATIONS ENERGY SPECIAL CONFERENCE, 1997, : 111 - 117
  • [7] Advances in solar thermoelectric and photovoltaic-thermoelectric hybrid systems for power generation
    Tyagi, Kriti
    Gahtori, Bhasker
    Kumar, Sushil
    Dhakate, S. R.
    [J]. SOLAR ENERGY, 2023, 254 : 195 - 212
  • [8] Mathematical modelling and performance evaluation of a hybrid photovoltaic-thermoelectric system
    Gu, Wenbo
    Ma, Tao
    Song, Aotian
    Li, Meng
    Shen, Lu
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2019, 198
  • [9] Critical factors and parameters for hybrid Photovoltaic-Thermoelectric systems; review
    Cotfas, D. T.
    Cotfas, P. A.
    Mahmoudinezhad, S.
    Louzazni, M.
    [J]. APPLIED THERMAL ENGINEERING, 2022, 215
  • [10] Performance analysis and load matching of a photovoltaic-thermoelectric hybrid system
    Lin, Jian
    Liao, Tianjun
    Lin, Bihong
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2015, 105 : 891 - 899