Microarray Time-Series Data Clustering via Multiple Alignment of Gene Expression Profiles

被引:0
|
作者
Subhani, Numanul [1 ]
Ngom, Alioune [1 ]
Rueda, Luis [1 ]
Burden, Conrad [2 ]
机构
[1] Univ Windsor, Sch Comp Sci, 5115 Lambton Tower,401 Sunset Ave, Windsor, ON N9B 3P4, Canada
[2] Australian Natl Univ, Ctr Bioinformat Sci, Inst Mat Sci, John Curtin Sch Med Res, GPO Box 4, Canberra, ACT 0200, Australia
基金
加拿大自然科学与工程研究理事会;
关键词
Microarrays; Time-Series Data; Gene Expression Profiles; Profile Alignment; Cubic Spline; k-Means Clustering;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Genes with similar expression profiles are expected to be functionally related or co-regulated. In this direction, clustering microarray time-series data via pairwise alignment of piece-wise linear profiles has been recently introduced. We propose a k-means clustering approach based on a multiple alignment of natural cubic spline representations of gene expression profiles. The multiple alignment is achieved by minimizing the sum of integrated squared errors over a tune-interval, defined oil a, set of profiles. Preliminary experiments on a well-known data set of 221 pre-clustered Saccharomyces cerevisiae gene expression profiles yields excellent results with 79.64% accuracy.
引用
收藏
页码:377 / +
页数:2
相关论文
共 50 条
  • [1] Multiple gene expression profile alignment for microarray time-series data clustering
    Subhani, Numanul
    Rueda, Luis
    Ngom, Alioune
    Burden, Conrad J.
    [J]. BIOINFORMATICS, 2010, 26 (18) : 2281 - 2288
  • [2] Clustering Microarray Time-series Data using Expectation Maximization and Multiple Profile Alignment
    Subhani, Numanul
    Rueda, Luis
    Ngom, Alioune
    Burden, Conrad J.
    [J]. BIBMW: 2009 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOP, 2009, : 1 - +
  • [3] Alignment versus Variation Methods for Clustering Microarray Time-Series Data
    Subhani, Numanul
    Li, Yifeng
    Ngom, Alioune
    Rueda, Luis
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [4] Gene clustering for time-series microarray with production outputs
    Chira, Camelia
    Sedano, Javier
    Villar, Jose R.
    Camara, Monica
    Prieto, Carlos
    [J]. SOFT COMPUTING, 2016, 20 (11) : 4301 - 4312
  • [5] Gene clustering for time-series microarray with production outputs
    Camelia Chira
    Javier Sedano
    José R. Villar
    Monica Camara
    Carlos Prieto
    [J]. Soft Computing, 2016, 20 : 4301 - 4312
  • [6] Clustering Time-Series Gene Expression Data with Unequal Time Intervals
    Rueda, Luis
    Bari, Ataul
    Ngom, Alioune
    [J]. TRANSACTIONS ON COMPUTATIONAL SYSTEMS BIOLOGY X, 2008, 5410 : 100 - 123
  • [7] Clustering of unevenly sampled gene expression time-series data
    Möller-Levet, CS
    Klawonn, F
    Cho, KH
    Yin, H
    Wolkenhauer, O
    [J]. FUZZY SETS AND SYSTEMS, 2005, 152 (01) : 49 - 66
  • [8] Clustering short time-series microarray
    Ping, Loh Wei
    Abu Hasan, Yahya
    [J]. INTERNATIONAL CONFERENCE ON MATHEMATICAL BIOLOGY 2007, 2008, 971 : 39 - 46
  • [9] Deep time-series clustering via latent representation alignment
    Lee, Sangho
    Choi, Chihyeon
    Son, Youngdoo
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 303
  • [10] EDISA: extracting biclusters from multiple time-series of gene expression profiles
    Supper, Jochen
    Strauch, Martin
    Wanke, Dierk
    Harter, Klaus
    Zell, Andreas
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)