Correlation of oceanographic signatures appearing in synthetic aperture radar and interferometric synthetic aperture radar imagery with in situ measurements

被引:15
|
作者
Marmorino, GO
Thompson, DR
Graber, HC
Trump, CL
机构
[1] UNIV MIAMI,ROSENSTIEL SCH MARINE & ATMOSPHER SCI,MIAMI,FL 33149
[2] JOHNS HOPKINS UNIV,APPL PHYS LAB,LAUREL,MD 20707
来源
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS | 1997年 / 102卷 / C8期
关键词
D O I
10.1029/97JC01450
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Synthetic aperture radar (SAR) imagery collected over the continental shelf near Cape Hatteras, N. C., is analyzed in conjunction with shipboard hydrographic and current measurements. The SAR measurements were made over a 2-hour period on June 20, 1993, in both standard mapping mode and interferometric synthetic aperture radar (INSAR) mode from a NASA DC-8 aircraft as part of the High-Resolution Remote Sensing Experiment. In situ currents were measured using a surface-towed acoustic Doppler current profiler (ADCP). The measurements were made near the end of a period of Gulf Stream incursion onto the shelf as detected using a shore-based HF radar. Winds were southwesterly at 4-6 m s(-1). Long, curvilinear SAR signatures, resembling earlier SEASAT observations made in the same area, are shown to correspond to narrow, shallow fronts separating water masses that increase in surface density with distance offshore. Across-front changes in surface current inferred from the INSAR data are consistent with 2-m-depth currents measured by the ADCP over scales of tens of meters. Thus frontal current gradients measured by INSAR reflect real changes in surface current and are not due to biases induced by changes in the surface-wave spectrum. This lends support to the detailed INSAR surface maps derived by Graber et al. [1996]. An east-west salinity front having the largest observed surface density and current gradient is corrugated on length scales up to the local Rossby radius of deformation and translates southward between successive images. In data from the longer radar wavelengths the salinity front appears as a dark band downwind of a bright signature, and this is interpreted as a region where Bragg-scale waves regenerate following their dissipation in the frontal region. In addition to the fronts the imagery shows closely spaced packets of southward propagating ocean internal waves occurring in the strongly stratified inshore water mass. This case study further serves to emphasize the potential of SAR imagery for study of a wide range of shelf processes.
引用
收藏
页码:18723 / 18736
页数:14
相关论文
共 50 条
  • [1] Interferometric synthetic aperture radar
    Griffiths, H
    [J]. ELECTRONICS & COMMUNICATION ENGINEERING JOURNAL, 1995, 7 (06): : 247 - 256
  • [2] Clutter discrimination in polarimetric and interferometric synthetic aperture radar imagery
    Blacknell, D
    Tough, RJA
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1997, 30 (04) : 551 - 566
  • [3] East coast upwelling signatures in synthetic aperture radar imagery
    Clemente-Colon, P
    [J]. IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 1391 - 1393
  • [4] AZIMUTHAL AMBIGUITIES IN SYNTHETIC APERTURE SONAR AND SYNTHETIC APERTURE RADAR IMAGERY
    ROLT, KD
    SCHMIDT, H
    [J]. IEEE JOURNAL OF OCEANIC ENGINEERING, 1992, 17 (01) : 73 - 79
  • [5] Georeferencing on Synthetic Aperture RADAR imagery
    Esmaeilzade, M.
    Amini, J.
    Zakeri, S.
    [J]. INTERNATIONAL CONFERENCE ON SENSORS & MODELS IN REMOTE SENSING & PHOTOGRAMMETRY, 2015, 41 (W5): : 179 - 184
  • [6] Exploring Distributed Scatterers Interferometric Synthetic Aperture Radar Attributes for Synthetic Aperture Radar Image Classification
    Wei, Mingxuan
    Liu, Yuzhou
    Zhu, Chuanhua
    Wang, Chisheng
    [J]. REMOTE SENSING, 2024, 16 (15)
  • [7] Interferometric polarimetric synthetic aperture radar system
    Zhou, ZS
    Takasawa, K
    Sato, M
    [J]. MULTISPECTRAL AND HYPERSPECTRAL IMAGE ACQUISITION AND PROCESSING, 2001, 4548 : 18 - 23
  • [8] Analysis of Interferometric Synthetic Aperture Radar technique
    Gromek, A
    Jobkiewicz, P
    Smolarczyk, M
    [J]. PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS IV, 2006, 6159
  • [9] Synthetic Aperture Radar Correlation Imaging
    Voccola, Kaitlyn
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (01): : 299 - 330
  • [10] Differentiable Rendering for Synthetic Aperture Radar Imagery
    Wilmanski, Michael C.
    Tamir, Jonathan I.
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (01) : 82 - 93