Materials genome project: Mining the ionic conductivity in oxide perovskites

被引:8
|
作者
Boubchir, Mohamed [1 ,2 ]
Aourag, Hafid [3 ]
机构
[1] Univ Djilali Liabes Sidi Bel Abbes, Sidi Bel Abbes, Algeria
[2] Lab Modelisat & Simulat Sci Mat, Sidi Bel Abbes, Algeria
[3] Univ Tlemcen, LEPM, Tilimsen, Algeria
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2021年 / 267卷
关键词
Oxide perovskites; Ionic conductor; Principal component analysis; Partial least square method; Formability; Thermodynamic stability; OXYGEN VACANCY FORMATION; AB-INITIO CALCULATIONS; 1ST-PRINCIPLES CALCULATIONS; ELECTRONIC-STRUCTURES; MAGNETIC-PROPERTIES; SOLID ELECTROLYTES; THERMAL-PROPERTIES; LATTICE-CONSTANT; FUEL-CELLS; RADII;
D O I
10.1016/j.mseb.2020.114984
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present in this work a strategy for predicting new oxide perovskites with the potential for achieving high ionic conductivity for applications as a solid oxide fuel cell (SOFC). We employ a throughout multivariate technique based the principal component analysis (PCA) and the partial least square methods (PLS) in order to identify empirical design rules (activation and migration energies) for stable ionic conductors. Among the 892 tested hypothetical oxide perovskites, which yet to be experimentally synthetized, similar to 150 compounds may exhibit an interesting potential as ionic conductors. These results may serve as a map for the design of perovskite-related solid electrolytes.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Materials genome project: Mining the ionic conductivity in oxide perovskites
    Boubchir, Mohamed
    Aourag, Hafid
    Materials Science and Engineering: B, 2021, 267
  • [2] Materials genome project: The application of principal component analysis to the formability of perovskites and inverse perovskites
    Boubchir, Mohamed
    Aourag, Hafid
    COMPUTATIONAL CONDENSED MATTER, 2020, 24
  • [3] A method to investigate oxide ionic transport for materials with high electronic conductivity
    Kharton, VV
    Naumovich, EN
    Nikolaev, AV
    SOLID STATE IONICS, 1996, 83 (3-4) : 301 - 307
  • [4] The Materials Genome Project
    Aourag, H.
    LASER AND PLASMA APPLICATIONS IN MATERIALS SCIENCE, 2008, 1047 : 48 - 48
  • [5] Ionic Conductivity in Mesoporous Materials
    Li Likun
    Wei Xiaolan
    Zhang Hao
    PROGRESS IN CHEMISTRY, 2009, 21 (04) : 765 - 770
  • [6] Pressure dependent ionic conductivity of complex lithium oxide solid electrolyte materials
    Torres, Carolyn
    Ostrander, John
    Teeters, Dale
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [7] Optimizing alkali ionic conductivity in materials
    Ong, Shyue Ping
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [8] IONIC CONDUCTIVITY IN ELECTRICAL INSULATING MATERIALS
    TAREEV, BM
    RENNE, VT
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 1966, 25 (11): : 514 - &
  • [9] Thermoelectric oxide materials based on cobalt perovskites
    Harizanova, Sonya G.
    Zhecheva, Ekaterina N.
    Khristov, Mitko G.
    Valchev, Vassil D.
    Stoyanova, Radostina K.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2016, 48 : 82 - 87
  • [10] Influence of Acceptor Doping on Ionic Conductivity in Alkali Earth Titanate Perovskites
    Dunyushkina, L. A.
    Mashkina, E. A.
    Nechaev, I. Yu.
    Babkina, A. A.
    Esina, N. O.
    Zhuravlev, B. V.
    Demin, A. K.
    IONICS, 2002, 8 (3-4) : 293 - 299