Revisiting the role of steam methane reforming with CO2 capture and storage for long-term hydrogen production

被引:79
|
作者
Navas-Anguita, Zaira [1 ,2 ]
Garcia-Gusano, Diego [3 ]
Dufour, Javier [1 ,2 ]
Iribarren, Diego [1 ]
机构
[1] IMDEA Energy, Syst Anal Unit, E-28935 Mostoles, Spain
[2] Rey Juan Carlos Univ, Chem & Environm Engn Grp, E-28933 Mostoles, Spain
[3] Basque Res & Technol Alliance BRTA, TECNALIA, E-48160 Derio, Spain
关键词
Blue hydrogen; Carbon footprint; Electrolysis; Energy systems modelling; Road transport; Steam methane reforming; LIFE-CYCLE;
D O I
10.1016/j.scitotenv.2021.145432
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Road transport is associated with high greenhouse gas emissions due to its current dependence on fossil fuels. In this regard, the implementation of alternative fuels such as hydrogen is expected to play a key role in decarbonising the transport system. Nevertheless, attention should be paid to the suitability of hydrogen production pathways as low-carbon solutions. In this work, an energy systems optimisation model for the prospective assessment of a national hydrogen production mix was upgraded in order to unveil the potential role of grey hydrogen from steam methane reforming (SMR) and blue hydrogen from SMR with CO2 capture and storage (CCS) in satisfying the hydrogen demanded by fuel cell electric vehicles in Spain from 2020 to 2050. This was done by including CCS retrofit of SMR plants in the energy systems model, as a potential strategy within the scope of the European Hydrogen Strategy. Considering three hypothetical years for banning hydrogen from fossil-based plants without CCS (2030. 2035. and 2040), it was found that SMR could satisfy the whole demand for hydrogen for road transport in the short term (2020-2030), while being substituted by water electrolysis in the medium-to-long term (2030-2050). Furthermore, this trend was found to be associated with an appropriate prospective behaviour in terms of carbon footprint. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Hydrogen Production via Steam Reforming with CO2 Capture
    Collodi, Guido
    CISAP4: 4TH INTERNATIONAL CONFERENCE ON SAFETY & ENVIRONMENT IN PROCESS INDUSTRY, 2010, 19 : 37 - 42
  • [2] HYDROGEN PRODUCTION FROM METHANE STEAM REFORMING WITH CO2 CAPTURE THROUGH METALLIC MEMBRANES
    Carapellucci, Roberto
    Favre, Eric
    Giordano, Lorena
    Roizard, Denis
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2016, VOL. 6A, 2017,
  • [3] Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production
    Soltani, R.
    Rosen, M. A.
    Dincer, I.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (35) : 20266 - 20275
  • [4] Analysis of hydrogen production costs in Steam-Methane Reforming considering integration with electrolysis and CO2 capture
    Katebah, Mary
    Al-Rawashdeh, Ma'moun
    Linke, Patrick
    CLEANER ENGINEERING AND TECHNOLOGY, 2022, 10
  • [5] Research goals for minimizing the cost of CO2 capture when using steam methane reforming for hydrogen production
    Mantripragada, Hari
    De Leon, Rafael
    Zoelle, Alexander
    Woods, Mark
    Lewis, Eric
    Fout, Timothy
    Shultz, Travis
    Grol, Eric
    Homsy, Sally
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2025, 14
  • [6] Hydrogen production from steam methane reforming coupled with in situ CO2 capture:: Conceptual parametric study
    Wang, YN
    Rodrigues, AE
    FUEL, 2005, 84 (14-15) : 1778 - 1789
  • [7] Thermodynamic analysis of hydrogen production via chemical looping steam methane reforming coupled with in situ CO2 capture
    Antzara, Andy
    Heracleous, Eleni
    Bukur, Dragomir B.
    Lemonidou, Angeliki A.
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 6576 - 6589
  • [8] Thermodynamic analysis of hydrogen production via chemical looping steam methane reforming coupled with in situ CO2 capture
    Antzara, A.
    Heracleous, E.
    Bukur, D. B.
    Lemonidou, A. A.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 32 : 115 - 128
  • [9] Blue, green, and turquoise pathways for minimizing hydrogen production costs from steam methane reforming with CO2 capture
    Pruvost, Florian
    Cloete, Schalk
    del Pozo, Carlos Arnaiz
    Zaabout, Abdelghafour
    ENERGY CONVERSION AND MANAGEMENT, 2022, 274
  • [10] Sorption-enhanced Steam Methane Reforming for Combined CO2 Capture and Hydrogen Production: A State-of-the-Art Review
    Soltani, Salman Masoudi
    Lahiri, Abhishek
    Bahzad, Husain
    Clough, Peter
    Gorbounov, Mikhail
    Yan, Yongliang
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2021, 1