Surface topology of a buoyant turbulent nonpremixed flame

被引:2
|
作者
Zhong, R [1 ]
Elghobashi, SE [1 ]
Boratav, ON [1 ]
机构
[1] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
关键词
D O I
10.1063/1.870454
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The temporal evolution of the three-dimensional stoichiometric mixture fraction F-st isosurface is investigated using direct numerical simulations of a turbulent nonpremixed flame with and without buoyancy. After an initial transient, the surface area of the F-st isosurface increases monotonically in time. The rate of area increase of the buoyant flame is larger than that of the nonbuoyant flame. The stretch rate of the buoyant flame surface indicates that the tangential strain rate S-t is dominant and positive at the troughs, whereas the relative propagation velocity term, u(n)del.n, is dominant and negative at the crests of the F-st isosurface. Thus, the local surface area of the crests decreases in time while that of the troughs increases, leading to the steep ridge topology. The strain rate field generated by the oppositely signed vortices saddling the F-st isosurface is responsible for this topology. The reaction rate in the buoyant flame is largest at the troughs where the scalar dissipation is maximum. (C) 2000 American Institute of Physics. [S1070-6631(00)02408-9].
引用
收藏
页码:2091 / 2100
页数:10
相关论文
共 50 条
  • [1] Natural Buoyant Turbulent Diffusion Flame near a Vertical Surface
    E. S. Markus
    E. A. Kuznetsov
    A. Yu. Snegirev
    Combustion, Explosion, and Shock Waves, 2018, 54 : 284 - 293
  • [2] Natural Buoyant Turbulent Diffusion Flame near a Vertical Surface
    Markus, E. S.
    Kuznetsov, E. A.
    Snegirev, A. Yu
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2018, 54 (03) : 284 - 293
  • [3] Flame length of buoyant turbulent slot flame
    Gao, Wei
    Liu, Naian
    Jiao, Yan
    Xie, Xiaodong
    Pan, Ying
    Li, Zilong
    Luo, Xisheng
    Zhang, Linhe
    Tu, Ran
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (03) : 3851 - 3858
  • [4] Erratum to: “Natural Buoyant Turbulent Diffusion Flame near a Vertical Surface”
    E. S. Markus
    E. A. Kuznetsov
    A. Yu. Snegirev
    Combustion, Explosion, and Shock Waves, 2018, 54 : 511 - 511
  • [5] Nonpremixed flamelet statistics at flame base of lifted turbulent jet nonpremixed flames
    Noda, S
    Mori, H
    Hongo, Y
    Nishioka, M
    JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING, 2005, 48 (01) : 75 - 82
  • [6] A flame surface density based model for large eddy simulation of turbulent nonpremixed combustion
    Zhou, XY
    Mahalingam, S
    PHYSICS OF FLUIDS, 2002, 14 (11) : L77 - L80
  • [7] Direct numerical simulations analysis of flame surface density models for nonpremixed turbulent combustion
    Van Kalmthout, E
    Veynante, D
    PHYSICS OF FLUIDS, 1998, 10 (09) : 2347 - 2368
  • [8] SIMULTANEOUS MEASUREMENTS OF VELOCITY AND DENSITY IN A TURBULENT NONPREMIXED FLAME
    SCHEFER, RW
    DIBBLE, RW
    AIAA JOURNAL, 1985, 23 (07) : 1070 - 1078
  • [9] Detailed Emissions Prediction for a Turbulent Swirling Nonpremixed Flame
    Monaghan, Rory F. D.
    Tahir, Rabi
    Bourque, Gilles
    Gordon, Robert L.
    Cuoci, Alberto
    Faravelli, Tiziano
    Frassoldati, Alessio
    Curran, Henry J.
    ENERGY & FUELS, 2014, 28 (02) : 1470 - 1488
  • [10] Comparative study of modeling a hydrogen nonpremixed turbulent flame
    Obieglo, A
    Gass, J
    Poulikakos, D
    COMBUSTION AND FLAME, 2000, 122 (1-2) : 176 - 194