Microbial consortia at steady supply

被引:28
|
作者
Taillefumier, Thibaud [1 ,2 ,3 ]
Posfai, Anna [1 ]
Meir, Yigal [4 ]
Wingreen, Ned S. [1 ,5 ]
机构
[1] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[3] Univ Texas Austin, Dept Neurosci, Austin, TX 78712 USA
[4] Ben Gurion Univ Negev, Dept Phys, Beer Sheva, Israel
[5] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
来源
ELIFE | 2017年 / 6卷
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
COMPETITIVE-EXCLUSION PRINCIPLE; PROTEIN-SYNTHESIS RATES; ECOLOGICAL DYNAMICS; ESCHERICHIA-COLI; RAPID EVOLUTION; STABILITY; SOIL; ENVIRONMENT; METABOLISM; DIVERSITY;
D O I
10.7554/eLife.22644
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metagenomics has revealed hundreds of species in almost all microbiota. In a few well-studied cases, microbial communities have been observed to coordinate their metabolic fluxes. In principle, microbes can divide tasks to reap the benefits of specialization, as in human economies. However, the benefits and stability of an economy of microbial specialists are far from obvious. Here, we physically model the population dynamics of microbes that compete for steadily supplied resources. Importantly, we explicitly model the metabolic fluxes yielding cellular biomass production under the constraint of a limited enzyme budget. We find that population dynamics generally leads to the coexistence of different metabolic types. We establish that these microbial consortia act as cartels, whereby population dynamics pins down resource concentrations at values for which no other strategy can invade. Finally, we propose that at steady supply, cartels of competing strategies automatically yield maximum biomass, thereby achieving a collective optimum.
引用
收藏
页数:65
相关论文
共 50 条
  • [1] DEVELOPMENT OF STEADY-STATE DIFFUSION GRADIENTS FOR THE CULTIVATION OF DEGRADATIVE MICROBIAL CONSORTIA
    WOLFAARDT, GM
    LAWRENCE, JR
    HENDRY, MJ
    ROBARTS, RD
    CALDWELL, DE
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1993, 59 (08) : 2388 - 2396
  • [2] Microbial consortia inoculants stimulate early growth of maize depending on nitrogen and phosphorus supply
    Bradacova, Klara
    Kandeler, Ellen
    Berger, Nils
    Ludewig, Uwe
    Neumann, Guenter
    [J]. PLANT SOIL AND ENVIRONMENT, 2020, 66 (03) : 105 - 112
  • [3] Electroactive microorganisms and microbial consortia
    Marsili, Enrico
    Freguia, Stefano
    [J]. BIOELECTROCHEMISTRY, 2018, 120 : 110 - 111
  • [4] Construction of microbial consortia for microbial degradation of complex compounds
    Cao, Zhibei
    Yan, Wenlong
    Ding, Mingzhu
    Yuan, Yingjin
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [5] Engineering Microbial Consortia towards Bioremediation
    Li, Xianglong
    Wu, Shanghua
    Dong, Yuzhu
    Fan, Haonan
    Bai, Zhihui
    Zhuang, Xuliang
    [J]. WATER, 2021, 13 (20)
  • [6] Single strain control of microbial consortia
    Fedorec, Alex J. H.
    Karkaria, Behzad D.
    Sulu, Michael
    Barnes, Chris P.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [7] Plant Growth Stimulation by Microbial Consortia
    Santoyo, Gustavo
    Guzman-Guzman, Paulina
    Parra-Cota, Fannie Isela
    Santos-Villalobos, Sergio de los
    Orozco-Mosqueda, Ma. del Carmen
    Glick, Bernard R.
    [J]. AGRONOMY-BASEL, 2021, 11 (02):
  • [8] Microbial consortia for multiple pollutant biodegradation
    Hamer, G
    [J]. PURE AND APPLIED CHEMISTRY, 1997, 69 (11) : 2343 - 2356
  • [9] Communication and Collaboration in Synthetic Microbial Consortia
    Collins, Cynthia H.
    [J]. BIOPHYSICAL JOURNAL, 2016, 110 (03) : 11A - 11A
  • [10] Engineering microbial consortia by division of labor
    Garrett W. Roell
    Jian Zha
    Rhiannon R. Carr
    Mattheos A. Koffas
    Stephen S. Fong
    Yinjie J. Tang
    [J]. Microbial Cell Factories, 18