Proposal for generating and detecting multi-qubit GHZ states in circuit QED

被引:60
|
作者
Bishop, Lev S. [1 ,2 ]
Tornberg, L. [3 ]
Price, D. [1 ,2 ]
Ginossar, E. [1 ,2 ]
Nunnenkamp, A. [1 ,2 ]
Houck, A. A. [4 ]
Gambetta, J. M. [5 ,6 ]
Koch, Jens [1 ,2 ]
Johansson, G. [3 ]
Girvin, S. M. [1 ,2 ]
Schoelkopf, R. J. [1 ,2 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[2] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
[3] Chalmers, Dept Microtechnol & Nanosci MC2, SE-41296 Gothenburg, Sweden
[4] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[5] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[6] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
来源
NEW JOURNAL OF PHYSICS | 2009年 / 11卷
基金
瑞典研究理事会;
关键词
HORNE-ZEILINGER ENTANGLEMENT; SUPERCONDUCTING QUBITS; QUANTUM ENTANGLEMENT; LOCAL THEORIES; TOMOGRAPHY; PHOTON; CAVITY;
D O I
10.1088/1367-2630/11/7/073040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose methods for the preparation and entanglement detection of multi-qubit Greenberger-Horne-Zeilinger (GHZ) states in circuit quantum electrodynamics. Using quantum trajectory simulations appropriate for the situation of a weak continuous measurement, we show that the joint dispersive readout of several qubits can be utilized for the probabilistic production of high-fidelity GHZ states. When employing a nonlinear filter on the recorded homodyne signal, the selected states are found to exhibit values of the Bell-Mermin operator exceeding 2 under realistic conditions. We discuss the potential of the dispersive readout to demonstrate a violation of the Mermin bound, and present a measurement scheme avoiding the necessity for full detector tomography.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Multi-qubit Quantum Rabi Model and Multi-partite Entangled States in a Circuit QED System
    Jialun Li
    Gangcheng Wang
    Ruoqi Xiao
    Chunfang Sun
    Chunfeng Wu
    Kang Xue
    Scientific Reports, 9
  • [2] Multi-qubit Quantum Rabi Model and Multi-partite Entangled States in a Circuit QED System
    Li, Jialun
    Wang, Gangcheng
    Xiao, Ruoqi
    Sun, Chunfang
    Wu, Chunfeng
    Xue, Kang
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [3] Implementation of non-local multi-qubit CNOT operation with multi-qubit GHZ states
    Zhou, Yan-Hui
    Shao, Xiao-Qiang
    Yang, Chun-Jiao
    Zhang, Shou
    Yeon, Kyu-Hwang
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 53 (02) : 477 - 480
  • [4] Realization of a hybrid multi-qubit quantum phase gate in circuit QED
    Zhang, Yu
    Su, Qiping
    Kang, Yihao
    Zheng, Wen
    Li, Shaoxiong
    Yang, Chuiping
    Yu, Yang
    APPLIED PHYSICS LETTERS, 2024, 125 (18)
  • [5] Multi-qubit joint measurements in circuit QED: stochastic master equation analysis
    Ben Criger
    Alessandro Ciani
    David P DiVincenzo
    EPJ Quantum Technology, 3
  • [6] Multi-qubit joint measurements in circuit QED: stochastic master equation analysis
    Criger, Ben
    Ciani, Alessandro
    DiVincenzo, David P.
    EPJ QUANTUM TECHNOLOGY, 2016, 3
  • [7] Author Correction: Multi-qubit Quantum Rabi Model and Multi-partite Entangled States in a Circuit QED System
    Jialun Li
    Gangcheng Wang
    Ruoqi Xiao
    Chunfang Sun
    Chunfeng Wu
    Kang Xue
    Scientific Reports, 9
  • [8] Towards a heralded eigenstate-preserving measurement of multi-qubit parity in circuit QED
    Huembeli, Patrick
    Nigg, Simon E.
    PHYSICAL REVIEW A, 2017, 96 (01)
  • [9] Multi-party semiquantum key distribution with multi-qubit GHZ states
    Pan, Hong-Ming
    QUANTUM INFORMATION PROCESSING, 2024, 23 (02)
  • [10] Multi-party semiquantum key distribution with multi-qubit GHZ states
    Hong-Ming Pan
    Quantum Information Processing, 23