Design and implementation of a parallel heterogeneous algorithm for hyperspectral image analysis using HeteroMPI

被引:0
|
作者
Valencia, David [1 ]
Lastovetsky, Alexey [2 ]
Plaza, Antonio [1 ]
机构
[1] Univ Extremadura, Dept Comp Sci, E-10071 Caceres, Spain
[2] Univ Coll Dublin, Sch Comp Sci & Informat, Dublin 4, Ireland
来源
ISPDC 2006: FIFTH INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING, PROCEEDINGS | 2006年
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The development of efficient techniques for transforming the massive volume of remotely sensed hyperspectral data collected on a daily basis into scientific understanding is critical for space-based Earth ience and planetary exploration. Although most available parallel processing strategies for hyperspectral image analysis ass ne homogeneity in the computing platform, heterogeneous networks of computers represent a promising cost-effective solution expected to play a major role in many on-going and planned remote sensing missions. To address the need,for cost-effective parallel hyperspectral imaging algorithms, this paper develops an innovative heterogeneous parallel algorithm for spatial/spectral morphological analysis of hyperspectral image data. The algorithm has been developed using Heterogeneous MPI (HeteroMPI), an extension of MPI for programming high-performance computations on heterogeneous networks of computers. Experimental results are presented and discussed in the context of a realistic application, based on hyperspectral data collected by NASA's Jet Propulsion Laboratory.
引用
收藏
页码:301 / +
页数:2
相关论文
共 50 条
  • [1] PARALLEL PROCESSING OF REMOTELY SENSED HYPERSPECTRAL IMAGES ON HETEROGENEOUS NETWORKS OF WORKSTATIONS USING HETEROMPI
    Valencia, David
    Lastovetsky, Alexey
    O'Flynn, Maureen
    Plaza, Antonio
    Plaza, Javier
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2008, 22 (04): : 386 - 407
  • [2] Parallel ICA and its hardware implementation in hyperspectral image analysis
    Du, H
    Qi, HR
    Peterson, GD
    INDEPENDENT COMPONENT ANALYSES, WAVELETS, UNSUPERVISED SMART SENSORS, AND NEURAL NETWORKS II, 2004, 5439 : 74 - 83
  • [3] AMEEPAR: Parallel morphological algorithm for hyperspectral image classification on heterogeneous networks of workstations
    Plaza, Antonio
    Plaza, Javier
    Valencia, David
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 3, PROCEEDINGS, 2006, 3993 : 24 - 31
  • [4] Parallel Implementation of the Modified Vertex Component Analysis Algorithm for Hyperspectral Unmixing Using OpenCL
    Callico, Gustavo M.
    Lopez, Sebastian
    Aguilar, Beatriz
    Lopez, Jose F.
    Sarmiento, Roberto
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (08) : 3650 - 3659
  • [5] Design and Implementation of Hyperspectral Image Analysis Tool: HYVIEW
    van Huan, Nguyen
    Kim, Hakil
    Kim, Sun-Hwa
    Lee, Kyu-Sung
    KOREAN JOURNAL OF REMOTE SENSING, 2007, 23 (03) : 171 - 179
  • [6] Parallel heterogeneous CBIR system for efficient hyperspectral image retrieval using spectral mixture analysis
    Plaza, Antonio J.
    Plaza, Javier
    Paz, Abel
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2010, 22 (09): : 1138 - 1159
  • [7] Parallel Implementation of Hyperspectral Image Processing Algorithms
    Plaza, Antonio
    Valencia, David
    Plaza, Javier
    Sanchez-Testal, Juan
    Munoz, Sergio
    Blazquez, Soraya
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 940 - 943
  • [8] PARALLEL IMPLEMENTATION OF THE SIMPLEX GROWING ALGORITHM FOR HYPERSPECTRAL UNMIXING USING OPENCL
    Bernabe, Sergio
    Botella, Guillermo
    Navarro, Jose M. R.
    Orueta, Carlos
    Prieto-Matias, Manuel
    Plaza, Antonio
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6153 - 6156
  • [9] An FPGA implementation of image space reconstruction algorithm for hyperspectral Imaging analysis
    Morales, Javier
    Santiago, Nayda G.
    Fernandez, Alejandro
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIII, 2007, 6565
  • [10] Cloud implementation of the K-means algorithm for hyperspectral image analysis
    Mario Haut, Juan
    Paoletti, Mercedes
    Plaza, Javier
    Plaza, Antonio
    JOURNAL OF SUPERCOMPUTING, 2017, 73 (01): : 514 - 529