Reducing Key Length of the McEliece Cryptosystem

被引:0
|
作者
Berger, Thierry P. [1 ]
Cayrel, Pierre-Louis [2 ]
Gaborit, Philippe [1 ]
Otmani, Ayoub [3 ]
机构
[1] Univ Limoges, XLIM DMI, 123 Av Albert Thomas, F-87060 Limoges, France
[2] Univ Paris 08, Dept Math, F-93526 St Denis, France
[3] Univ Caen, GREYC Ensicaen, F-10450 Caen, France
来源
关键词
public-key cryptography; McEliece cryptosystem; Alternant code; quasi-cyclic; ALGORITHM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The McEliece cryptosystem is one of the oldest public-key cryptosystems ever designed. It is also the first public-key cryptosystem based on linear error-correcting codes. Its main advantage is to have very fast encryption and decryption functions. However it suffers from a major drawback. It requires a very large public key which makes it very difficult to use in many practical situations. A possible solution is to advantageously use quasi-cyclic codes because of their compact representation. On the other hand, for a fixed level of security, the use of optimal codes like Maximum Distance Separable ones allows to use smaller codes. The almost only known family of MDS codes with an efficient decoding algorithm is the class of Generalized Reed-Solomon (GRS) codes. However, it is well-known that GRS codes and quasi-cyclic codes do not represent secure solutions. In this paper we propose a new general method to reduce the public key size by constructing quasi-cyclic Alternant codes over a relatively small field like F-28 . We introduce a new method of hiding the structure of a quasi-cyclic GRS code. The idea is to start from a Reed-Solomon code in quasi-cyclic form defined over a large field. We then apply three transformations that preserve the quasi-cyclic feature. First, we randomly block shorten the RS code. Next, we transform it to get a Generalised Reed Solomon, mid lastly we take the subfield subcode over a smaller field. We show that all existing structural attacks are infeasible. We also introduce a new NP-complete decision problem called quasi-cyclic syndrome decoding. This result suggests that decoding attack against our variant has little chance to be better than the general one against the classical McEliece cryptosystem. We propose a system with several sizes of parameters from 6,800 to 20,000 bits with a security ranging from 2(80) to 2(120).
引用
收藏
页码:77 / +
页数:4
相关论文
共 50 条
  • [1] Reducing the Key Length of McEliece Cryptosystem Using Polar Codes
    Hooshmand, R.
    Shooshtari, M. Koochak
    Eghlidos, T.
    Aref, M. R.
    2014 11TH INTERNATIONAL ISC CONFERENCE ON INFORMATION SECURITY AND CRYPTOLOGY (ISCISC), 2014, : 104 - 108
  • [2] McEliece Cryptosystem: Reducing the Key Size with QC-LDPC codes
    Perez-Pacheco, Paula
    Caballero-Gil, Pino
    2023 19TH INTERNATIONAL CONFERENCE ON THE DESIGN OF RELIABLE COMMUNICATION NETWORKS, DRCN, 2023,
  • [3] Key Privacy in McEliece Public Key Cryptosystem
    Wang, Qiang
    Qiu, Xue
    Zhang, Quan
    Tang, Chaojing
    TRUSTCOM 2011: 2011 INTERNATIONAL JOINT CONFERENCE OF IEEE TRUSTCOM-11/IEEE ICESS-11/FCST-11, 2011, : 824 - 828
  • [4] ON THE MCELIECE PUBLIC-KEY CRYPTOSYSTEM
    VANTILBURG, J
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 403 : 119 - 131
  • [5] Hexi McEliece Public Key Cryptosystem
    Ilanthenral, K.
    Easwarakumar, K. S.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (05): : 2595 - 2603
  • [6] The key space of the McEliece-Sidelnikov cryptosystem
    Chizhov, I. V.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2009, 19 (05): : 445 - 474
  • [7] QUANTUM MCELIECE PUBLIC-KEY CRYPTOSYSTEM
    Fujita, Hachiro
    QUANTUM INFORMATION & COMPUTATION, 2012, 12 (3-4) : 181 - 202
  • [8] CRYPTANALYSIS OF MCELIECE PUBLIC-KEY CRYPTOSYSTEM
    KORZHIK, VI
    TURKIN, AI
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 547 : 68 - 70
  • [9] Enhanced Public Key Security for the McEliece Cryptosystem
    Baldi, Marco
    Bianchi, Marco
    Chiaraluce, Franco
    Rosenthal, Joachim
    Schipani, Davide
    JOURNAL OF CRYPTOLOGY, 2016, 29 (01) : 1 - 27
  • [10] Enhanced Public Key Security for the McEliece Cryptosystem
    Marco Baldi
    Marco Bianchi
    Franco Chiaraluce
    Joachim Rosenthal
    Davide Schipani
    Journal of Cryptology, 2016, 29 : 1 - 27