Hybrid-mixed stress finite element models in elastoplastic analysis

被引:13
|
作者
Mendes, Luis A. M. [2 ]
Castro, Luis M. S. S. [1 ]
机构
[1] Univ Tecn Lisboa, Civil Engn & Architecture Dept, Inst Super Tecn, P-1049001 Lisbon, Portugal
[2] Lab Nacl Engn Civil, Earthquake Engn & Struct Dynam Div, Struct Dept, P-1700066 Lisbon, Portugal
关键词
Finite elements; Hybrid-mixed stress models; Elastoplastic analysis; Stretching plates; Legendre polynomials; REISSNER-MINDLIN PLATES;
D O I
10.1016/j.finel.2009.06.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A hybrid-mixed stress finite element formulation for the elastoplastic analysis of stretching plates is presented. This model is characterized by the simultaneous and independent approximation of both the stress and the displacement fields in the domain and of the displacement field on the static boundary. To model the local phenomena associated with plasticity, the plastic parameter increments are also directly approximated. The plastic flow and the kinematic boundary conditions are locally satisfied. The remaining fundamental equations are enforced in a weighted residual form so designed as to ensure that the discrete model presents all relevant properties of the continuous system, namely the static-kinematic duality, elastic reciprocity and associated plasticity. The orthogonal Legendre polynomials are used as approximation functions for the stress and the displacements fields. Dirac functions and non-negative polynomial functions are used to model the plastic parameter increments. The model presented here assumes a quasi-static and geometrically linear response. The elastoplastic constitutive relations are uncoupled into elastic and plastic deformation modes and both the Von Mises and the Drucker-Prager yield criteria have been implemented. The non-linear governing system is solved using the Newton-Raphson method. To validate the hybrid-mixed stress model and to assess its performance and accuracy, a set of numerical test cases is presented and discussed. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:863 / 875
页数:13
相关论文
共 50 条
  • [1] Polynomial wavelets in hybrid-mixed stress finite element models
    Santos Castro, Luis Manuel
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2010, 26 (10) : 1293 - 1312
  • [2] Hybrid-Mixed Stress Finite Element Models for the Dynamic Analysis of Reinforced Concrete Frame Structures
    Arruda, M. R. T.
    Castro, L. M. S. S.
    PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY, 2010, 93
  • [3] Computation of critical loads and buckling modes using hybrid-mixed stress finite element models
    Arruda, P. F. T.
    Arruda, M. R. T.
    Santos Castro, L. M.
    COMPUTERS & STRUCTURES, 2015, 154 : 72 - 90
  • [4] Hybrid-Mixed Stress Finite Element Models for the Physically Non-Linear Analysis of Concrete Three-Dimensional Structures
    Garrido, C. S. R.
    Castro, L. M. S. S.
    PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY, 2010, 93
  • [5] GENERALIZED FINITE ELEMENT METHOD ON NONCONVENTIONAL HYBRID-MIXED FORMULATION
    Gois, Wesley
    Baroncini Proenca, Sergio Persival
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2012, 9 (03)
  • [6] FINITE ELEMENT ANALYSIS OF PLATE SYSTEMS: 1. HYBRID-MIXED FINITE ELEMENTS.
    Vayas, I.
    Engineering computations, 1984, 1 (04) : 324 - 328
  • [7] Time Integration Procedures with Hybrid-Mixed Stress Finite Elements
    Arruda, M. R. T.
    Castro, L. M. S. S.
    PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY, 2010, 93
  • [8] Hybrid-mixed stress formulation using continuum damage models
    Silva, C. M.
    Castro, L. M. S. S.
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2006, 22 (06): : 605 - 617
  • [9] Wavelets in hybrid-mixed stress elements
    Castro, LMS
    de Freitas, JAT
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (31) : 3977 - 3998
  • [10] Performance of Walsh-based hybrid-mixed stress analysis
    Santos Castro, Luis Manuel
    Teixeira de Freitas, Joao Antonio
    COMPUTERS & STRUCTURES, 2009, 87 (21-22) : 1263 - 1274