Enabling the development of accurate intrinsic parameter extraction model for GaN HEMT using support vector regression (SVR)

被引:16
|
作者
Khusro, Ahmad [1 ]
Hashmi, Mohammad S. [2 ,3 ]
Ansari, Abdul Quaiyum [1 ]
机构
[1] Jamia Millia Islamia, Dept Elect Engn, New Delhi, India
[2] Nazarbayev Univ, Dept Elect & Comp Engn, Astana, Kazakhstan
[3] IIIT Delhi, Dept Elect & Commun Engn, New Delhi, India
关键词
regression analysis; microwave circuits; III-V semiconductors; gallium compounds; semiconductor device models; support vector machines; high electron mobility transistors; S-parameters; GaN HEMT; support vector regression; SVR; gallium nitride high electron mobility transistors; nonlinear Gaussian kernel; high-dimensional feature space; geometry parameters; intrinsic parameters; measured S-parameters; multibiasing sets; reliable intrinsic parameter extraction; accurate intrinsic parameter extraction; learning technique; scaling efficiency; computer-aided design tool; size; 200; 0; mum; 100; frequency; 1; 0 GHz to 18; GHz; GaN; EQUIVALENT-CIRCUIT; SIGNAL; ALGORITHM;
D O I
10.1049/iet-map.2018.6039
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study employs support vector regression (SVR) to develop an accurate and reliable intrinsic parameter extraction model for gallium nitride (GaN) high electron mobility transistors (HEMT) using two different geometries of 2 x 200 mu m and 4 x 100 mu m. The key aspect of the proposed approach is the use of nonlinear Gaussian kernel to transform the input space into a high-dimensional feature space. It then allows the application of learning technique to develop a reliable procedure for parameter extraction. The proposed extraction model of GaN HEMT has been developed for a broad range of frequency, from 1 to 18 GHz, with multi-biasing sets for HEMTs of two different geometries. Moreover, the proposed model is made scalable in terms of geometry parameters and therefore can be used to predict the intrinsic parameters and enumerate scaling efficiency of GaN HEMTs by investigating the geometry parameters. A good agreement is observed between the measured S-parameters and the proposed model for the complete frequency range. It is shown that the proposed approach is simple, novel and can be readily incorporated into computer-aided design tool for an accurate and expedited design process of RF and microwave circuits.
引用
收藏
页码:1457 / 1466
页数:10
相关论文
共 50 条
  • [1] An accurate and simplified small signal parameter extraction method for GaN HEMT
    Khusro, Ahmad
    Hashmi, Mohammad S.
    Ansari, Abdul Quaiyum
    Mishra, Aditya
    Tarique, Mohammad
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2019, 47 (06) : 941 - 953
  • [2] A nonlinear model for frequency dispersion and DC intrinsic parameter extraction for GaN-based HEMT
    Tung The-Lam Nguyen
    Kim, Sam-Dong
    SOLID-STATE ELECTRONICS, 2017, 137 : 109 - 116
  • [3] Small-signal model parameter extraction for AlGaN/GaN HEMT
    余乐
    郑英奎
    张昇
    庞磊
    魏珂
    马晓华
    Journal of Semiconductors, 2016, 37 (03) : 52 - 56
  • [4] Small-signal model parameter extraction for AlGaN/GaN HEMT
    余乐
    郑英奎
    张昇
    庞磊
    魏珂
    马晓华
    Journal of Semiconductors, 2016, (03) : 52 - 56
  • [5] Small-signal model parameter extraction for AlGaN/GaN HEMT
    Yu Le
    Zheng Yingkui
    Zhang Sheng
    Pang Lei
    Wei Ke
    Ma Xiaohua
    JOURNAL OF SEMICONDUCTORS, 2016, 37 (03)
  • [6] A Method for AlGaN/GaN HEMT Nonlinear Device Model Parameter Extraction
    Chang Y.
    Mao W.
    Du L.
    Hao Y.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2017, 39 (12): : 3039 - 3044
  • [7] A Non-Parametric Friction Model for Accurate Positioning Control using v-Support Vector Regression (v-SVR)
    Tijani, I. B.
    Wahyudi, M.
    Talib, H. H.
    Fadly, J. D.
    Wijaya, Andika Aji
    2009 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, VOLS 1-3, 2009, : 1886 - +
  • [8] Modeling and Siting of wind farms using Support Vector Regression (SVR)
    Asadi, Meysam
    Pourhossein, Kazem
    2019 INTERNATIONAL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS (ACEMP) & 2019 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM), 2019, : 511 - 516
  • [9] Health Indicators Analysis and Forecast Using Support Vector Regression (SVR)
    Kort, Houssemeddine
    Daoud, Mouna B.
    Nouira, Kaouther
    VISION 2020: SUSTAINABLE GROWTH, ECONOMIC DEVELOPMENT, AND GLOBAL COMPETITIVENESS, VOLS 1-5, 2014, : 1131 - +
  • [10] ON THE ASSESSMENT OF SMOS SALINITY RETRIEVAL BY USING SUPPORT VECTOR REGRESSION (SVR)
    Sabia, R.
    Marconcini, M.
    Katagis, T.
    Fernandez-Prieto, D.
    Portabella, M.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1555 - 1558