Cdc2 tyrosine phosphorylation is not required for the S-phase DNA damage checkpoint in fission yeast

被引:10
|
作者
Kommajosyula, Naveen [1 ]
Rhind, Nicholas [1 ]
机构
[1] Univ Massachusetts, Sch Med, Dept Mol Pharmacol & Biochem, Worcester, MA 01609 USA
关键词
S-phase DNA damage checkpoint; inter-S checkpoint; Cdc2; Cdc25; Schizosaccharomyces pombe; fission yeast;
D O I
10.4161/cc.5.21.3423
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The S-phase DNA damage checkpoint slows replication when damage occurs during S phase. Cdc25, which activates Cdc2 by dephosphorylating tyrosine-15, has been shown to be a downstream target of the checkpoint in metazoans, but its role is not clear in fission yeast. The dephosphorylation of Cdc2 has been assumed not to play a role in S-phase regulation because cells replicate in the absence of Cdc25, demonstrating that tyrosine-15 phosphorylated Cdc2 is sufficient for S phase. However, it has been reported recently that Cdc25 is involved in the slowing of S phase in response to damage in fission yeast, suggesting a modulatory role for Cdc2 dephosphorylation in S phase. We have investigated the role of Cdc25 and the tyrosine phosphorylation of Cdc2 in the S-phase damage checkpoint, and our results show that Cdc2 phosphorylation is not a target of the checkpoint. The checkpoint was not compromised in a Cdc25 overexpressing strain, a strain carrying nonphosphorylatable form of Cdc2, or in a strain lacking Cdc25. Our results are consistent with a strictly Cdc2-Y15 phosphorylation-independent mechanism of the fission yeast S-phase DNA damage checkpoint.
引用
收藏
页码:2495 / 2500
页数:6
相关论文
共 50 条