Coexistence and Local Exponential Stability of Multiple Equilibria in Memristive Neural Networks with a Class of General Nonmonotonic Activation Functions

被引:0
|
作者
Huang, Yujiao [1 ]
Chen, Shijun [1 ]
Xiao, Jie [1 ]
Hao, Pengyi [1 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310023, Zhejiang, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Memristive neural network; Coexistence; Local exponential stability; General nonmonotonic activation function; SYNCHRONIZATION; MULTISTABILITY;
D O I
10.1007/978-3-319-59072-1_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the multistability problem of n-dimensional memristive neural networks with a class of general nonmonotonic activation functions. Sufficient conditions are proposed for checking the existence of (2l + 3)(n) equilibria, of which (l + 2)(n) equilibria are locally exponentially stable. The obtained stability results improve and extend the existing ones. One numerical example is given to illustrate the effectiveness of the obtained results.
引用
收藏
页码:354 / 362
页数:9
相关论文
共 50 条
  • [1] Coexistence and local stability of multiple equilibria in neural networks with piecewise linear nondecreasing activation functions
    Wang Lili
    Lu Wenlian
    Chen Tianping
    [J]. NEURAL NETWORKS, 2010, 23 (02) : 189 - 200
  • [2] Coexistence and local μ-stability of multiple equilibrium points for memristive neural networks with nonmonotonic piecewise linear activation functions and unbounded time-varying delays
    Nie, Xiaobing
    Zheng, Wei Xing
    Cao, Jinde
    [J]. NEURAL NETWORKS, 2016, 84 : 172 - 180
  • [3] Absolute exponential stability of neural networks with a general class of activation functions
    Liang, XB
    Wang, J
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2000, 47 (08): : 1258 - 1263
  • [4] On exponential stability of delayed neural networks with a general class of activation functions
    Sun, CY
    Zhang, KJ
    Fei, SM
    Feng, CB
    [J]. PHYSICS LETTERS A, 2002, 298 (2-3) : 122 - 132
  • [5] Exponential Stability of Multiple Equilibria for Memristive Cohen-Grossberg Neural Networks with Non-monotonic Activation Functions
    Nie, Xiaobing
    Zheng, Wei Xing
    [J]. 2015 5TH AUSTRALIAN CONTROL CONFERENCE (AUCC), 2015, : 33 - 38
  • [6] Improved conditions for global exponential stability of a general class of memristive neural networks
    Wu, Ailong
    Zeng, Zhigang
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (03) : 975 - 985
  • [7] Exponential stability of Cohen-Grossberg neural networks with a general class of activation functions
    Wan, AH
    Wang, MS
    Peng, J
    Qiao, H
    [J]. PHYSICS LETTERS A, 2006, 350 (1-2) : 96 - 102
  • [8] Global exponential stability for recurrent neural networks with a general class of activation functions and variable delays
    Zhou, DM
    Zhang, LM
    Zhao, DF
    [J]. PROCEEDINGS OF 2003 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS & SIGNAL PROCESSING, PROCEEDINGS, VOLS 1 AND 2, 2003, : 108 - 111
  • [9] On Stability of Multiple Equilibria for Delayed Neural Networks with Discontinuous Activation Functions
    Nie Xiaobing
    Zheng Wei Xing
    [J]. 2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 3542 - 3547
  • [10] Dynamical Behaviors of Multiple Equilibria in Competitive Neural Networks With Discontinuous Nonmonotonic Piecewise Linear Activation Functions
    Nie, Xiaobing
    Zheng, Wei Xing
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (03) : 679 - 693