Dynamic Programming Guided Exploration for Sampling-based Motion Planning Algorithms

被引:0
|
作者
Arslan, Oktay [1 ,2 ]
Tsiotras, Panagiotis [1 ,2 ]
机构
[1] Georgia Inst Technol, D Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Inst Robot & Intelligent Machines, Atlanta, GA 30332 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Several sampling-based algorithms have been recently proposed that ensure asymptotic optimality. The convergence of these algorithms can be improved if sampling is guided toward the most promising region of the search space where the solution is more likely to be found. In this paper we propose three sample rejection methods that leverage the classification of the samples according to their potential of being part of the optimal solution to guide the exploration of the motion planner to promising regions of the search space. These sampling strategies are a direct by-product of the exploitation phase of the algorithm, which uses a dynamic programming (DP) step while planning on random graphs as, for example, is done in the RRT# algorithm. It is shown that the proposed sampling strategies are able to compute high-quality solutions, much faster than existing algorithms. We provide numerical results and compare the performance of the proposed algorithm with the original RRT# and the RRT* algorithms.
引用
收藏
页码:4819 / 4826
页数:8
相关论文
共 50 条
  • [1] Machine Learning Guided Exploration for Sampling-based Motion Planning Algorithms
    Arslan, Oktay
    Tsiotras, Panagiotis
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 2646 - 2652
  • [2] Sampling-based algorithms for optimal motion planning
    Karaman, Sertac
    Frazzoli, Emilio
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (07): : 846 - 894
  • [3] Balancing Exploration and Exploitation in Sampling-Based Motion Planning
    Rickert, Markus
    Sieverling, Arne
    Brock, Oliver
    IEEE TRANSACTIONS ON ROBOTICS, 2014, 30 (06) : 1305 - 1317
  • [4] Learning-Guided Exploration for Efficient Sampling-Based Motion Planning in High Dimensions
    Schramm, Liam
    Boularias, Abdeslam
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 4429 - 4435
  • [5] Sampling-Based Optimal Motion Planning With Smart Exploration and Exploitation
    Wang, Zhuping
    Li, Yunsong
    Zhang, Hao
    Liu, Chun
    Chen, Qijun
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2020, 25 (05) : 2376 - 2386
  • [6] A scalable method for parallelizing sampling-based motion planning algorithms
    Jacobs, Sam Ade
    Manavi, Kasra
    Burgos, Juan
    Denny, Jory
    Thomas, Shawna
    Amato, Nancy M.
    Proceedings - IEEE International Conference on Robotics and Automation, 2012, : 2529 - 2536
  • [7] A Scalable Method for Parallelizing Sampling-Based Motion Planning Algorithms
    Jacobs, Sam Ade
    Manavi, Kasra
    Burgos, Juan
    Denny, Jory
    Thomas, Shawna
    Amato, Nancy M.
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 2529 - 2536
  • [8] Non-Parametric Informed Exploration for Sampling-Based Motion Planning
    Joshi, Sagar Suhas
    Panagiotis, Tsiotras
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 5915 - 5921
  • [9] Use of Relaxation Methods in Sampling-based Algorithms for Optimal Motion Planning
    Arslan, Oktay
    Tsiotras, Panagiotis
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 2421 - 2428
  • [10] Sampling-based Algorithms for Optimal Motion Planning with Deterministic μ-Calculus Specifications
    Karaman, Sertac
    Frazzoli, Emilio
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 735 - 742