Effect of secondary flow on gas-solid flow regimes in lifting elbows

被引:19
|
作者
Ji, Yun [1 ,2 ]
Liu, Songyong [1 ,2 ]
机构
[1] China Univ Min & Technol, Sch Mechatron Engn, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Jiangsu Collaborat Innovat Ctr Intelligent Min Eq, Xuzhou 221116, Jiangsu, Peoples R China
关键词
CFD-DEM coupling; Secondary flow; Lifting elbow; Flow regimes; Orthogonal design method; PARTICLE EROSION; 2-PHASE FLOW; CFD-DEM; SWIRLING INTENSITY; VOID FRACTION; PREDICTION; SIMULATION; PRESSURE; WEAR; VALIDATION;
D O I
10.1016/j.powtec.2019.05.013
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The influence of the elbow lifting angle, airflow velocity and solid mass flow rate on particle flow regimes in lifting elbows has been characterized by an Euler-Lagrange four-way coupling method. The computational fluid dynamics (CFD) and discrete element method (DEM) were used for modeling in this paper. The effect of particle-wall collisions on particle motion was considered by adopting a modified Hertz-Mindlin (no slip) model. An orthogonal design method, to significantly reduce the number of the schemes, was used in this paper to discriminate the significant effects of three independent variables on pressure drops in the lifting elbow. The effect of the secondary flow on pressure drops, volume fractions and solid concentrations is discussed in the results section. The results indicated that the pressure drop increased gradually with increasing airflow velocity and solid mass flow rate; however, there was an optimal lifting angle at which the pressure drop was the smallest. For a 90 degrees elbow, the maximum collision region of the particles on the inner wall of the elbow depended only on the ratio of the radius of curvature to the diameter of the pipe and was independent of the air-flow velocity and particle concentration. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:397 / 412
页数:16
相关论文
共 50 条
  • [1] The effect of vibration on the erosion of elbows in gas-solid two-phase flow
    Guo, Zihan
    Fan, Jianchun
    Zhang, Jun
    Yang, Yunpeng
    POWDER TECHNOLOGY, 2025, 452
  • [2] Numerical research on gas-solid two phase flow and erosion in elbows
    Yu, Fei
    Liu, Ming
    Wang, Ting
    Yang, Xue-Lian
    Yan, Jun-Jie
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2015, 36 (04): : 796 - 800
  • [3] Numerical prediction of erosion distributions and solid particle trajectories in elbows for gas-solid flow
    Peng, Wenshan
    Cao, Xuewen
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2016, 30 : 455 - 470
  • [4] Erosion of natural gas elbows due to rotating particles in turbulent gas-solid flow
    Zamani, Mohammad
    Seddighi, Sadegh
    Nazif, Hamid Reza
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2017, 40 : 91 - 113
  • [5] Numerical investigation on erosion characteristics of coplanar elbows connection for gas-solid flow
    Wang, Yu
    Liu, Rongtang
    Liu, Ming
    Yan, Junjie
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 5245 - 5250
  • [6] Numerical study on the particle erosion of elbows mounted in series in the gas-solid flow
    Zhao, Xiangyang
    Cao, Xuewen
    Xie, Zhenqiang
    Cao, Hengguang
    Wu, Chao
    Bian, Jiang
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2022, 99
  • [7] Flow regimes in gas-solid fluidized bed with for vertical internals
    Taofeeq, Haidar
    Al-Dahhan, Muthanna
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2018, 138 : 87 - 104
  • [8] Numerical prediction of solid particle erosion in angle-cutting elbows with gas-solid flow
    Liu, Rongtang
    Wang, Yu
    Liu, Ming
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2023, 237 (02) : 306 - 320
  • [9] An investigation of erosion prediction for 15° to 90° elbows by numerical simulation of gas-solid flow
    Banakermani, M. R.
    Naderan, Hamid
    Saffar-Awal, Majid
    POWDER TECHNOLOGY, 2018, 334 : 9 - 26
  • [10] Information transmission and flow regimes identification in gas-solid fluidized bed
    Wang, Xiaoping
    Huang, Yilun
    Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2003, 54 (08): : 1059 - 1064