Spectral statistics for one-dimensional Anderson model with unbounded but decaying potential

被引:0
|
作者
Mallick, Anish [1 ]
Dolai, Dhriti Ranjan [2 ]
机构
[1] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Survey 151, Hesaraghatta Hobli 560089, Bengaluru, India
[2] Indian Stat Inst, Bangalore Ctr, 8th Mile,Mysore Rd, Bengaluru 560059, India
关键词
Local eigenvalue statistics; clock process; Anderson model;
D O I
10.1142/S0219025719500127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study the spectral statistics for Anderson model on l(2)(N) with decaying randomness whose single-site distribution has unbounded support. Here, we consider the operator H-omega given by (H(omega)u)(n) = u(n+1) + u(n-1) + a(n)omega(n)u(n), a(n) similar to n(-alpha) and {omega(n)} are real i.i.d random variables following symmetric distribution mu with fat tail, i.e. mu((-R, R)(c)) < C/R-delta for R >> 1, for some constant C. In case of alpha - 1/delta > 1/2, we are able to show that the eigenvalue process in (-2, 2) is the clock process.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Dynamical Localization for the One-Dimensional Continuum Anderson Model in a Decaying Random Potential
    Bourget, Olivier
    Moreno Flores, Gregorio R.
    Taarabt, Amal
    ANNALES HENRI POINCARE, 2020, 21 (10): : 3095 - 3118
  • [2] Dynamical Localization for the One-Dimensional Continuum Anderson Model in a Decaying Random Potential
    Olivier Bourget
    Gregorio R. Moreno Flores
    Amal Taarabt
    Annales Henri Poincaré, 2020, 21 : 3095 - 3118
  • [3] From closed to open one-dimensional Anderson model: Transport versus spectral statistics
    Sorathia, S.
    Izrailev, F. M.
    Zelevinsky, V. G.
    Celardo, G. L.
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [4] One-dimensional Discrete Anderson Model in a Decaying Random Potential: from AC Spectrum to Dynamical Localization
    Bourget, Olivier
    Moreno Flores, Gregorio R.
    Taarabt, Amal
    SPECTRAL THEORY AND MATHEMATICAL PHYSICS, STMP 2018, 2020, : 37 - 62
  • [5] One-dimensional periodic Anderson model
    Gulacsi, M.
    MODERN PHYSICS LETTERS B, 2014, 28 (06):
  • [6] Spectral estimates for the one-dimensional non-self-adjoint Anderson model
    Martinez, Carmen
    JOURNAL OF OPERATOR THEORY, 2006, 56 (01) : 59 - 88
  • [7] PHASE RANDOMNESS IN THE ONE-DIMENSIONAL ANDERSON MODEL
    STONE, AD
    ALLAN, DC
    JOANNOPOULOS, JD
    PHYSICAL REVIEW B, 1983, 27 (02): : 836 - 843
  • [8] Localized entanglement in one-dimensional Anderson model
    Li, HB
    Wang, XG
    MODERN PHYSICS LETTERS B, 2005, 19 (11): : 517 - 527
  • [9] EXPONENTIAL LOCALIZATION IN THE ONE-DIMENSIONAL ANDERSON MODEL
    KIMBALL, JC
    PHYSICAL REVIEW B, 1981, 24 (06): : 2964 - 2971
  • [10] Classical representation of the one-dimensional Anderson model
    Izrailev, FM
    Ruffo, S
    Tessieri, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (23): : 5263 - 5270