Positive radial solutions for elliptic equations with sign-changing nonlinear terms in an annulus

被引:1
|
作者
Ding, Yonghong [1 ,2 ]
Li, Yongxiang [2 ]
机构
[1] Tianshui Normal Univ, Dept Math, Tianshui, Gansu, Peoples R China
[2] Northwest Normal Univ, Dept Math, Lanzhou, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Elliptic equation; positive radial solution; eigenvalue; cone;
D O I
10.1080/17476933.2020.1867117
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the existence and nonexistence of positive radial solutions of the elliptic equation {-Delta u = f (|x|, u), u is an element of Omega, u|(partial derivative Omega) = 0, where Omega = {x is an element of R-N : r(1) < |x| < r(2)}, N >= 3 and f is an element of C([r(1), r(2)] x R+), whose sign may change. We present new eigenvalue criteria for the existence and nonexistence to this problem. The discussion is based on the fixed point index theory in cones.
引用
收藏
页码:1229 / 1243
页数:15
相关论文
共 50 条