An approximate minimum BER approach to multiuser detection using recurrent neural networks

被引:0
|
作者
de Lamare, RC [1 ]
Sampaio-Neto, R [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, CETUC, BR-22453900 Rio De Janeiro, Brazil
关键词
D O I
10.1109/PIMRC.2002.1045238
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we investigate the use of an approximate minimum bit error rate (MBER) approach to multiuser detection using recurrent neural networks (RNN). We examine a stochastic gradient adaptive algorithm for approximating the MBER from training data using RNN structures. A comparative analysis of linear and neural multiuser receivers (MUD), employing minimum mean squared error (MMSE) and approximate MBER (AMBER) adaptive algorithms is carried out. Computer simulation experiments show that the neural MUD operating with a criterion similar to the AMBER algorithm outperforms neural receivers using the MMSE criterion via gradient-type algorithms and linear receivers with MMSE and MBER techniques.
引用
收藏
页码:1295 / 1299
页数:5
相关论文
共 50 条
  • [1] Constrained minimum-BER multiuser detection
    Wang, XF
    Lu, WS
    Antoniou, A
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (10) : 2903 - 2909
  • [2] Constrained minimum-BER multiuser detection
    Univ of Victoria, Victoria, Canada
    ICASSP IEEE Int Conf Acoust Speech Signal Process Proc, (2603-2606):
  • [3] Constrained minimum-BER multiuser detection
    Wang, XF
    Lu, WS
    Antoniou, A
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 2603 - 2606
  • [4] Adaptive minimum-BER linear multiuser detection
    Chen, S
    Samingan, AK
    Mulgrew, B
    Hanzo, L
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 2253 - 2256
  • [5] An Artificial Neural Network Based Approach To Calculate BER In CDMA For Multiuser Detection Using Mem
    Kaur, Ramanpreet
    Singh, Simrandeep
    PROCEEDINGS ON 2016 2ND INTERNATIONAL CONFERENCE ON NEXT GENERATION COMPUTING TECHNOLOGIES (NGCT), 2016, : 450 - 455
  • [6] RECURRENT NEURAL NETWORKS FOR SUB-OPTIMAL MULTIUSER DETECTION
    Moodley, N.
    Mneney, S. H.
    SAIEE AFRICA RESEARCH JOURNAL, 2006, 97 (02): : 105 - 111
  • [7] A new constrained minimum-BER multiuser detection algorithm
    Chen, FJ
    Xiong, SK
    Wei, G
    PROCEEDINGS OF THE IEEE 6TH CIRCUITS AND SYSTEMS SYMPOSIUM ON EMERGING TECHNOLOGIES: FRONTIERS OF MOBILE AND WIRELESS COMMUNICATION, VOLS 1 AND 2, 2004, : 365 - 368
  • [8] Hardware implementation of a multiuser detection scheme based on recurrent neural networks
    Schlecker, W
    Engelhart, A
    Teich, WG
    Pfleiderer, HJ
    FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS, PROCEEDINGS: RECONFIGURABLE COMPUTING IS GOING MAINSTREAM, 2002, 2438 : 1097 - 1100
  • [9] A survey of multiuser/multisubchannel detection schemes based on recurrent neural networks
    Engelhart, A
    Teich, WG
    Lindner, J
    Jeney, G
    Imre, S
    Pap, L
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2002, 2 (03): : 269 - 284
  • [10] Blind adaptive multiuser detection using a recurrent neural network
    Liu, SB
    Wang, J
    2004 INTERNATIONAL CONFERENCE ON COMMUNICATION, CIRCUITS, AND SYSTEMS, VOLS 1 AND 2: VOL 1: COMMUNICATION THEORY AND SYSTEMS - VOL 2: SIGNAL PROCESSING, CIRCUITS AND SYSTEMS, 2004, : 1071 - 1075