Mining maximum frequent itemsets based on directed itemsets graph

被引:0
|
作者
Wen Lei [1 ]
机构
[1] N China Elect Power Univ, Dept Econ & Management, Baoding 071003, Peoples R China
关键词
DISG; formal concept analysis; prune strategy; the maximal frequent itemset;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new algorithm called MFDG is introduced. This algorithms use DISG to store the useful information of frequent itemsets. By using depth first searching strategy and an efficient pruning methods, the algorithms can discover the maximal frequent itemsets of all the frequent itemsets. At last an experiment on a real dataset to test MFDG is done. The experiment shows that the method is effective.
引用
收藏
页码:681 / 683
页数:3
相关论文
共 5 条
  • [1] Agrawal R, 1994, P 20 INT C VER LARG, V1215, P487
  • [2] Data mining: An overview from a database perspective
    Chen, MS
    Han, JW
    Yu, PS
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1996, 8 (06) : 866 - 883
  • [3] Efficiently mining maximal frequent itemsets
    Gouda, K
    Zaki, MJ
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 163 - 170
  • [4] LEI W, 2003, P RSFDGRC 2003, P660
  • [5] WILE R, 1982, ORDERED SETS, P445