Moses, Noah and Joseph effects in Levy walks

被引:16
|
作者
Aghion, Erez [1 ]
Meyer, Philipp G. [1 ]
Adlakha, Vidushi [2 ,3 ]
Kantz, Holger [1 ]
Bassler, Kevin E. [2 ,3 ,4 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Univ Houston, Dept Phys, Houston, TX 77204 USA
[3] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA
[4] Univ Houston, Dept Math, Houston, TX 77204 USA
来源
NEW JOURNAL OF PHYSICS | 2021年 / 23卷 / 02期
基金
美国国家科学基金会;
关键词
anomalous diffusion; time series analysis; Lé vy walks;
D O I
10.1088/1367-2630/abd43c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a method for detecting the origins of anomalous diffusion, when it is observed in an ensemble of times-series, generated experimentally or numerically, without having knowledge about the exact underlying dynamics. The reasons for anomalous diffusive scaling of the mean-squared displacement are decomposed into three root causes: increment correlations are expressed by the 'Joseph effect' (Mandelbrot and Wallis 1968 Water Resour. Res.4 909), fat-tails of the increment probability density lead to a 'Noah effect' (Mandelbrot and Wallis 1968 Water Resour. Res.4 909), and non-stationarity, to the 'Moses effect' (Chen et al 2017 Phys. Rev. E 95 042141). After appropriate rescaling, based on the quantification of these effects, the increment distribution converges at increasing times to a time-invariant asymptotic shape. For different processes, this asymptotic limit can be an equilibrium state, an infinite-invariant, or an infinite-covariant density. We use numerical methods of time-series analysis to quantify the three effects in a model of a non-linearly coupled Levy walk, compare our results to theoretical predictions, and discuss the generality of the method.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Non-linear shot noise: Levy, Noah, & Joseph
    Eliazar, I
    Klafter, J
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 360 (02) : 227 - 260
  • [2] Shot noise displaying simultaneously the Noah and Joseph effects
    Eliazar, Iddo
    Klafter, Joseph
    [J]. PHYSICAL REVIEW E, 2007, 75 (03):
  • [3] Levy walks
    Zaburdaev, V.
    Denisov, S.
    Klafter, J.
    [J]. REVIEWS OF MODERN PHYSICS, 2015, 87 (02) : 483 - 530
  • [4] Moses Levy in Florence
    Marini, G
    [J]. PRINT QUARTERLY, 2000, 17 (04) : 400 - 401
  • [5] Noah and Joseph effects: floods and droughts under global warming
    Sen, Zekai
    [J]. INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2018, 16 (03) : 347 - 364
  • [6] Levy flights and Levy walks revisited
    Zumofen, G
    Klafter, J
    Shlesinger, MF
    [J]. ANOMALOUS DIFFUSION: FROM BASICS TO APPLICATIONS, 1999, 519 : 15 - 34
  • [7] NOAH JOSEPH AND OPERATIONAL HYDROLOGY
    MANDELBROT, BB
    WALLIS, JR
    [J]. WATER RESOURCES RESEARCH, 1968, 4 (05) : 909 - +
  • [8] Moses Levy water colourist
    Bosetti, Francesco
    [J]. CRITICA D ARTE, 2019, 77 (3-4): : 47 - 64
  • [9] Levy flights versus Levy walks in bounded domains
    Dybiec, Bartlomiej
    Gudowska-Nowak, Ewa
    Barkai, Eli
    Dubkov, Alexander A.
    [J]. PHYSICAL REVIEW E, 2017, 95 (05)
  • [10] Levy walks in nonhomogeneous environments
    Kaminska, A.
    Srokowski, T.
    [J]. PHYSICAL REVIEW E, 2017, 96 (03)