Large-Scale Machine Learning at Verizon: Theory and Applications

被引:0
|
作者
Srivastava, Ashok [1 ]
机构
[1] Verizon, Palo Alto, CA 94301 USA
来源
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING | 2016年
关键词
Large-scale machine learning; Orion; Revenue Generation;
D O I
10.1145/2939672.2945361
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This talk will cover recent innovations in large-scale machine learning and their applications on massive, real-world data sets at Verizon. These applications power new revenue generating products and services for the company and are hosted on a massive computing and storage platform known as Orion. We will discuss the architecture of Orion and the underlying algorithmic framework. We will also cover some of the real world aspects of building a new organization dedicated to creating new product lines based on data science.
引用
收藏
页码:417 / 417
页数:1
相关论文
共 50 条
  • [1] A Machine-Learning Approach for Communication Prediction of Large-Scale Applications
    Papadopoulou, Nikela
    Goumas, Georgios
    Koziris, Nectarios
    2015 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING - CLUSTER 2015, 2015, : 120 - 123
  • [2] A Survey on Large-Scale Machine Learning
    Wang, Meng
    Fu, Weijie
    He, Xiangnan
    Hao, Shijie
    Wu, Xindong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (06) : 2574 - 2594
  • [3] Efficient Machine Learning On Large-Scale Graphs
    Erickson, Parker
    Lee, Victor E.
    Shi, Feng
    Tang, Jiliang
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4788 - 4789
  • [4] Large-scale kernel extreme learning machine
    Deng, Wan-Yu
    Zheng, Qing-Hua
    Chen, Lin
    Jisuanji Xuebao/Chinese Journal of Computers, 2014, 37 (11): : 2235 - 2246
  • [5] Machine learning for large-scale MOF screening
    Coupry, Damien
    Groot, Laurens
    Addicoat, Matthew
    Heine, Thomas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [6] Robust Large-Scale Machine Learning in the Cloud
    Rendle, Steffen
    Fetterly, Dennis
    Shekita, Eugene J.
    Su, Bor-yiing
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1125 - 1134
  • [7] Large-scale Machine Learning over Graphs
    Yang, Yiming
    PROCEEDINGS OF THE 2018 ACM SIGIR INTERNATIONAL CONFERENCE ON THEORY OF INFORMATION RETRIEVAL (ICTIR'18), 2018, : 9 - 9
  • [8] Large-Scale Machine Learning and Neuroimaging in Psychiatry
    Thompson, Paul
    BIOLOGICAL PSYCHIATRY, 2018, 83 (09) : S51 - S51
  • [9] Coding for Large-Scale Distributed Machine Learning
    Xiao, Ming
    Skoglund, Mikael
    ENTROPY, 2022, 24 (09)
  • [10] Resource Elasticity for Large-Scale Machine Learning
    Huang, Botong
    Boehm, Matthias
    Tian, Yuanyuan
    Reinwald, Berthold
    Tatikonda, Shirish
    Reiss, Frederick R.
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 137 - 152