Chimpanzee face recognition from videos in the wild using deep learning

被引:137
|
作者
Schofield, Daniel [1 ]
Nagrani, Arsha [2 ]
Zisserman, Andrew [2 ]
Hayashi, Misato [3 ]
Matsuzawa, Tetsuro [3 ]
Biro, Dora [4 ]
Carvalho, Susana [1 ,5 ,6 ,7 ]
机构
[1] Univ Oxford, Inst Cognit & Evolutionary Anthropol, Primate Models Behav Evolut Lab, Oxford, England
[2] Univ Oxford, Dept Engn Sci, Visual Geometry Grp, Oxford, England
[3] Kyoto Univ, Primate Res Inst, Inuyama, Aichi, Japan
[4] Univ Oxford, Dept Zool, Oxford, England
[5] Gorongosa Natl Pk, Sofala, Mozambique
[6] Univ Algarve, Interdisciplinary Ctr Archaeol & Evolut Human Beh, Faro, Portugal
[7] Univ Coimbra, Ctr Funct Ecol Sci People & Planet, Coimbra, Portugal
基金
日本学术振兴会; 英国工程与自然科学研究理事会;
关键词
IDENTIFICATION;
D O I
10.1126/sciadv.aaw0736
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Video recording is now ubiquitous in the study of animal behavior, but its analysis on a large scale is prohibited by the time and resources needed to manually process large volumes of data. We present a deep convolutional neural network (CNN) approach that provides a fully automated pipeline for face detection, tracking, and recognition of wild chimpanzees from long-term video records. In a 14-year dataset yielding 10 million face images from 23 individuals over 50 hours of footage, we obtained an overall accuracy of 92.5% for identity recognition and 96.2% for sex recognition. Using the identified faces, we generated co-occurrence matrices to trace changes in the social network structure of an aging population. The tools we developed enable easy processing and annotation of video datasets, including those from other species. Such automated analysis unveils the future potential of large-scale longitudinal video archives to address fundamental questions in behavior and conservation.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A facial expression recognition system using robust face features from depth videos and deep learning
    Uddin, Md. Zia
    Hassan, Mohammed Mehedi
    Almogren, Ahmad
    Zuair, Mansour
    Fortino, Giancarlo
    Torresen, Jim
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2017, 63 : 114 - 125
  • [2] Human Activity Recognition in Videos Using Deep Learning
    Kumar, Mohit
    Rana, Adarsh
    Ankita
    Yadav, Arun Kumar
    Yadav, Divakar
    [J]. SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS, ICSOFTCOMP 2022, 2023, 1788 : 288 - 299
  • [3] Emotion Recognition in the Wild from Videos using Images
    Bargal, Sarah Adel
    Barsoum, Emad
    Ferrer, Cristian Canton
    Zhang, Cha
    [J]. ICMI'16: PROCEEDINGS OF THE 18TH ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2016, : 433 - 436
  • [4] Suspicious Human Activity Recognition From Surveillance Videos Using Deep Learning
    Mohamed Zaidi, Monji
    Avelino Sampedro, Gabriel
    Almadhor, Ahmad
    Alsubai, Shtwai
    Al Hejaili, Abdullah
    Gregus, Michal
    Abbas, Sidra
    [J]. IEEE ACCESS, 2024, 12 : 105497 - 105510
  • [5] Face Recognition in Real-world Internet Videos Based on Deep Learning
    Li, Zhaoyang
    Tie, Yun
    Qi, Lin
    [J]. 2019 8TH INTERNATIONAL SYMPOSIUM ON NEXT GENERATION ELECTRONICS (ISNE), 2019,
  • [6] Face Recognition in Real-world Surveillance Videos with Deep Learning Method
    Wang, Ya
    Bao, Tianlong
    Ding, Chunhui
    Zhu, Ming
    [J]. 2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), 2017, : 239 - 243
  • [7] A Survey of Deep Face Recognition in The Wild
    Prihasto, Bima
    Choirunnisa, Shabrina
    Nurdiansyah, Muhammad Ishak
    Mathulaprangsan, Seksan
    Chu, Vivian Ching-Mei
    Chen, Shi-Huang
    Wang, Jia-Ching
    [J]. 2016 INTERNATIONAL CONFERENCE ON ORANGE TECHNOLOGIES (ICOT), 2018, : 76 - 79
  • [8] Ancient Roman Coin Recognition in the Wild using Deep Learning Based Recognition of Artistically Depicted Face Profiles
    Schlag, Imanol
    Arandjelovic, Ognjen
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2898 - 2906
  • [9] Deep learning for surgical phase recognition using endoscopic videos
    Guedon, Annetje C. P.
    Meij, Senna E. P.
    Osman, Karim N. M. M. H.
    Kloosterman, Helena A.
    van Stralen, Karlijn J.
    Grimbergen, Matthijs C. M.
    Eijsbouts, Quirijn A. J.
    van den Dobbelsteen, John J.
    Twinanda, Andru P.
    [J]. SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2021, 35 (11): : 6150 - 6157
  • [10] Deep learning for surgical phase recognition using endoscopic videos
    Annetje C. P. Guédon
    Senna E. P. Meij
    Karim N. M. M. H. Osman
    Helena A. Kloosterman
    Karlijn J. van Stralen
    Matthijs C. M. Grimbergen
    Quirijn A. J. Eijsbouts
    John J. van den Dobbelsteen
    Andru P. Twinanda
    [J]. Surgical Endoscopy, 2021, 35 : 6150 - 6157