FMRI ANALYSIS THROUGH BAYESIAN VARIABLE SELECTION WITH A SPATIAL PRIOR

被引:9
|
作者
Xia, Jing [1 ]
Liang, Feng [1 ]
Wang, Yongmei Michelle [1 ]
机构
[1] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
关键词
Bayesian variable selection; hemodynamic response function; activation detection; spatial prior; Markov chain Monte Carlo (MCMC);
D O I
10.1109/ISBI.2009.5193147
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents a novel spatial Bayesian method for simultaneous activation detection and hemodynamic response function (HRF) estimation of functional magnetic resonance imaging (fMRI) data. A Bayesian variable selection approach is used to induce shrinkage and sparsity, with a spatial prior on latent variables representing activated hemodynamic response components. Then, the activation map is generated from the full spectrum of posterior inference constructed through a Markov chain Monte Carlo scheme, and HRFs at different voxels are estimated non-parametrically with information pooling from neighboring voxels. By integrating functional activation detection and HRFs estimation in a unified framework, our method is more robust to noise and less sensitive to model mis-specification.
引用
收藏
页码:714 / 717
页数:4
相关论文
共 50 条
  • [1] Spatial Bayesian hierarchical model with variable selection to fMRI data
    Lee, Kuo-Jung
    Hsieh, Shulan
    Wen, Tanya
    [J]. SPATIAL STATISTICS, 2017, 21 : 96 - 113
  • [2] Bayesian Analysis of fMRI Data with ICA Based Spatial Prior
    Bathula, Deepti R.
    Tagare, Hemant D.
    Staib, Lawrence H.
    Papademetris, Xenophon
    Schultz, Robert T.
    Duncan, James S.
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2008, PT II, PROCEEDINGS, 2008, 5242 : 246 - 254
  • [3] Classification of brain activation via spatial Bayesian variable selection in fMRI regression
    Stefanie Kalus
    Philipp G. Sämann
    Ludwig Fahrmeir
    [J]. Advances in Data Analysis and Classification, 2014, 8 : 63 - 83
  • [4] Classification of brain activation via spatial Bayesian variable selection in fMRI regression
    Kalus, Stefanie
    Saemann, Philipp G.
    Fahrmeir, Ludwig
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2014, 8 (01) : 63 - 83
  • [5] A Robust Bayesian Analysis of Variable Selection under Prior Ignorance
    Tathagata Basu
    Matthias C. M. Troffaes
    Jochen Einbeck
    [J]. Sankhya A, 2023, 85 : 1014 - 1057
  • [6] A Robust Bayesian Analysis of Variable Selection under Prior Ignorance
    Basu, Tathagata
    Troffaes, Matthias C. M.
    Einbeck, Jochen
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (01): : 1014 - 1057
  • [7] Assessing brain activity through spatial Bayesian variable selection
    Smith, M
    Pütz, B
    Auer, D
    Fahrmeir, L
    [J]. NEUROIMAGE, 2003, 20 (02) : 802 - 815
  • [8] A Hierarchical Prior for Bayesian Variable Selection with Interactions
    Li, Anqi
    Culpepper, Steven Andrew
    [J]. QUANTITATIVE PSYCHOLOGY, IMPS 2023, 2024, 452 : 45 - 56
  • [9] A graph Laplacian prior for Bayesian variable selection and grouping
    Chakraborty, Sounak
    Lozano, Aurelie C.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 136 : 72 - 91
  • [10] Bayesian Variable Selection in Spatial Autoregressive Models
    Piribauer, Philipp
    Cuaresma, Jesus Crespo
    [J]. SPATIAL ECONOMIC ANALYSIS, 2016, 11 (04) : 457 - 479