ARITHMETIC FUNCTIONS OF FIBONACCI AND LUCAS NUMBERS

被引:0
|
作者
Jaidee, Montree [1 ]
Pongsriiam, Prapanpong [1 ]
机构
[1] Silpakorn Univ, Fac Sci, Dept Math, Nakhon Pathom 73000, Thailand
来源
FIBONACCI QUARTERLY | 2019年 / 57卷 / 03期
关键词
DIVISOR FUNCTION; APPEARANCE; ORDER; DIVISIBILITY; POWERS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-n and L-n be the nth Fibonacci and Lucas numbers, respectively. Let phi(n) be the Euler totient function of n and sigma(k)(n) the sum of kth powers of the positive divisors of n. Luca obtained the inequalities phi(F-n) >= F-phi(n), sigma(0)(F-n) >= F-sigma 0(n), and sigma(k)(F-n) <= F-sigma k(n) for all n, k >= 1. In this article, we extend Luca's result by replacing the function phi by phi(k) and J(k), which are generalizations of phi. We also consider the corresponding results for phi(k)(L-n), L-phi k(n), J(k)(L-n), L-Jk(n), sigma(k)(L-n), and L-sigma k(n).
引用
收藏
页码:246 / 254
页数:9
相关论文
共 50 条
  • [1] Equations involving arithmetic functions of Fibonacci and Lucas numbers
    Luca, F
    [J]. FIBONACCI QUARTERLY, 2000, 38 (01): : 49 - 55
  • [2] Arithmetic functions of Fibonacci numbers
    Luca, F
    [J]. FIBONACCI QUARTERLY, 1999, 37 (03): : 265 - 268
  • [3] Arithmetic functions of Fibonacci numbers
    Luca, F
    [J]. FIBONACCI QUARTERLY, 2003, 41 (04): : 382 - 384
  • [4] ON CERTAIN ARITHMETIC PROPERTIES OF FIBONACCI AND LUCAS-NUMBERS
    HILTON, P
    PEDERSEN, J
    VRANCKEN, L
    [J]. FIBONACCI QUARTERLY, 1995, 33 (03): : 211 - 217
  • [5] Generating functions of the incomplete Fibonacci and Lucas numbers
    Pintér A.
    Srivastava H.M.
    [J]. Rendiconti del Circolo Matematico di Palermo, 1999, 48 (3) : 591 - 596
  • [6] Generalized Fibonacci and Lucas polynomials and multiplicative arithmetic functions
    MacHenry, T
    [J]. FIBONACCI QUARTERLY, 2000, 38 (02): : 167 - 173
  • [7] δ-FIBONACCI AND δ-LUCAS NUMBERS, δ-FIBONACCI AND δ-LUCAS POLYNOMIALS
    Witula, Roman
    Hetmaniok, Edyta
    Slota, Damian
    Pleszczynski, Mariusz
    [J]. MATHEMATICA SLOVACA, 2017, 67 (01) : 51 - 70
  • [8] Fibonacci and Lucas Numbers of Factorials and Factorials of Fibonacci and Lucas
    Phunphayap, Phakhinkon
    Khemaratchatakumthorn, Tammatada
    Sumritnorrapong, Patcharee
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (01): : 11 - 19
  • [9] The continuous functions for the Fibonacci and Lucas p-numbers
    Stakhov, A
    Rozin, B
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 28 (04) : 1014 - 1025
  • [10] Fibonacci numbers as mixed concatenations of Fibonacci and Lucas numbers
    Altassan, Alaa
    Alan, Murat
    [J]. MATHEMATICA SLOVACA, 2024, 74 (03) : 563 - 576